共查询到17条相似文献,搜索用时 46 毫秒
1.
在超燃燃烧室凹腔上游及其底部近前壁面处布置电极产生丝状等离子体,基于准直流电弧放电热阻塞原理,采用数值模拟方法研究了等离子体对燃烧室均温、凹腔均温、剪切层、凹腔阻力以及质量交换率的影响.结果显示:等离子体对燃烧室整体的温升效应可以忽略,但能够明显提高凹腔内平均温度;受丝状等离子体对凹腔的预热及对剪切层的“切割”作用,剪切层中沿流动方向的涡强度降低,从而降低了凹腔前缘及后缘撞击激波强度,使其附近压力分布更平滑;丝状等离子体存在时,凹腔阻力系数明显下降,质量交换率也大幅提高,但增大等离子体输入功率对改善控制效果的影响不明显. 相似文献
2.
超燃燃烧室中燃料的掺混强化问题备受关注,为了优化悬臂斜坡喷注器/凹腔组合结构在超燃燃烧室中的流场特性,运用数值模拟方法对悬臂斜坡喷注器/凹腔组合结构的冷、热流场进行研究,对比分析有无凹腔结构、悬臂斜坡喷注器/凹腔不同位置组合对流场特性的影响。结果表明:随着组合位置距离的增大,凹腔的稳定燃烧作用变强,但不同的组合位置会带来燃烧室不同的燃料掺混效果和燃烧特性;综合考虑,组合距离h=30mm虽然总压损失较大,但却拥有更强的燃料掺混效果和更大的燃烧效率收益,流场特性最优。 相似文献
3.
4.
凹腔/支板结构亚燃冲压燃烧室性能 总被引:2,自引:1,他引:2
为了避免基于凹腔火焰稳定器的亚燃冲压燃烧室壁面喷注时燃料与主流空气掺混非均匀性问题和提高燃烧室的性能,提出在亚燃冲压燃烧室中使用支板喷注代替壁面喷注的方案,数值模拟了凹腔/支板结构亚燃冲压燃烧室中燃料分布及流场结构,并分析了支板结构对燃料空气混合及燃烧室性能的影响。研究表明:支板虽然使燃烧室出口的总压恢复系数相对于壁面喷注方式下的降低了63%,但能使燃料均匀分布于整个流道内,增强了燃料与空气掺混,使燃烧室出口的混合效率和燃烧效率分别提高了21.4%和20.5%。燃烧效率的提高弥补了采用支板导致的燃烧室内气流的额外总压损失所带来的机械能损失,使得支板喷注时燃烧室出口的比冲提高了39.6%。因此,在亚燃冲压燃烧室中设置凹腔/支板结构,有利于提高燃烧室整体性能。 相似文献
5.
6.
7.
为了将支板喷注器与等离子体射流这两种促进超声速燃烧室燃烧的方式结合起来,设计了一种带有等离子体射流喷孔的支板燃烧室,并在超声速来流的条件下,针对燃料喷注总压、燃料喷注位置、等离子体射流介质、等离子体射流总压对燃烧室燃烧性能的影响进行了三维数值模拟。研究发现:增大燃料的喷注总压,燃烧室的燃烧范围明显增大,燃烧效率呈现出先增大后减小的趋势,在燃料喷注总压为2.0MPa时,燃烧效率达到最大值90.4%;不同的燃料喷注位置对燃烧室的燃烧范围影响较小;等离子体射流介质为O2时,燃烧效率最高,燃烧范围最广;提高等离子体射流的喷注总压,能够提升凹腔剪切层高度,有效促进燃烧,但同时也带来了更高的总压损失。 相似文献
8.
对台阶和凹腔组合的超燃冲压发动机燃烧室结构进行了数值模拟分析。在冷态流场中,分析了组合结构流场特性和激波特点,同时对以氢气为燃料的燃烧室流场进行了数值模拟。模拟结果表明:台阶下游和凹腔处存在有利于燃烧和火焰稳定的回流区,能够增强凹腔卷吸的效果,从而可以增强燃料的混合;在燃烧流场中,凹腔是火焰稳定的主要区域,燃烧效率较高,此结构能够很好地起到增强燃烧的作用。 相似文献
9.
带凹腔支板的数值模拟 总被引:5,自引:0,他引:5
用大涡模拟的方法对带凹腔支板进行了数值模拟.采用Smagorinsky-Lily亚网格尺度模型,并用SIMPLE算法和中心差分格式求解离散方程.仿真结果表明:凹腔对支板尾流有一定的影响;在本文研究的凹腔深度范围内(5mm、11 mm、15mm),随着凹腔深度的增加,尾流近壁面旋涡的最大涡量值先减小后增大,频率先增大后减小. 相似文献
10.
超燃冲压发动机双凹腔燃烧室氢气燃烧流场分析 总被引:5,自引:3,他引:2
为了比较超燃冲压发动机中双凹腔燃烧室相对于单凹腔燃烧室在促进燃烧方面的优势,运用高速摄影仪拍摄了氢气当量比为0.07时燃烧室中的火焰情况,结合数值仿真结果,得出如下结论:小当量比情况下氢气燃烧很稳定,燃烧区域主要集中于前凹腔的剪切层和该凹腔所围成的三角区以及该凹腔下游壁面位置,燃料喷口周围没有火焰;无论是串联凹腔燃烧室还是并联凹腔燃烧室,相同条件下燃烧时壁面压力均比单凹腔燃烧室高,串联凹腔之间的回流区为燃烧提供了有利的条件;在一定范围内,串联凹腔之间的距离越近,燃烧放热越集中,壁面压力越高. 相似文献
11.
为了研究在入口来流马赫数2.52,总温1486K的超声速来流条件下,稳焰凹腔上游不同位置乙烯横向喷注对模型发动机燃烧室内低频燃烧振荡特性的影响,通过1kg/s直连式超燃试验平台,利用高频压力传感器、高速摄影相机等设备,对凹腔上游近距离、远距离喷注等方案的发动机内部压力与火焰动态特性进行了研究。试验结果表明:在当前当量比条件下,当稳焰凹腔上游近距离喷注燃料时,燃烧室存在较大范围亚声速区域,并出现由热声不稳定性激励的低频压力振荡,频率分布范围较宽(50~400Hz)且振幅较弱。对于燃料喷注位置到稳焰凹腔距离较远的情况,燃烧室内出现以火焰逆传和火焰吹脱为特征的周期性火焰振荡现象。分析认为较远喷注距离有利于燃料-空气充分混合并形成预混区,导致火焰快速逆传。火焰逆传与DDT (爆燃转爆震)中的火焰加速传播过程有关。周期性火焰逆传与火焰吹脱过程相耦合形成了具有特定主频(约85Hz)且振幅较大的低频压力振荡。 相似文献
12.
13.
针对双模态超燃燃烧室内分别处于上游(高速、较低总温)和下游(较低速、高总温)不同热环境下十字交叉布置的支板,通过数值仿真,从材料选择、辐射影响程度及主被动热防护措施三方面研究了支板换热问题,并且研究了不同冷却水流速对支板前缘冷却性能的影响。结果表明:上游支板受气动加热影响比下游支板显著;对于所计算工况,考虑支板与气体之间的辐射作用后,上下游支板前缘温度均下降约150K;对下游支板进行主动冷却效果明显,冷却水流速为10m/s能满足长时间工作要求。 相似文献
14.
为深入分析再生冷却通道与燃烧室的耦合传热过程以及探究多因素作用下的主动冷却耦合传热特性,采用航空煤油单组分替代模型,对超声速燃烧与流动裂解耦合换热过程进行数值模拟研究。探究了裂解反应、冷却流量、当量比对耦合传热的影响。结果表明:燃料的喷注与燃烧产生的扰动会破坏波系并向隔离段传递,燃烧强度随着燃烧的当量比增加变得更加剧烈;相同条件下,裂解产生的换热量在冷却流量较小时不可忽略,而冷却流量增加会使裂解程度减弱,当冷却流量为4g/s时正癸烷基本全部裂解,而增加至8g/s时裂解率不到10%;当量比对冷却通道与燃烧室的耦合传热的影响有限,当量比由0.67增加至0.84时,冷却通道出口温度升高约5K,燃烧室内壁温只增加了30K。 相似文献
15.
采用数值方法求解三维可压NS方程,模拟了斜激波增强超声速氢/空气混合的过程。对不同强度 激波混合增强的效率进行了比较。计算表明利用斜激波增强混合是一种行之有效的方法。 相似文献
16.
实现高速气流的点火和稳定燃烧是超燃冲压发动机燃烧室设计面临的主要问题,空气节流通过在流场中产生激波串,减小主流气体的马赫数,提高当地的静温和静压,辅助发动机实现起动点火和稳定燃烧.为了研究空气节流的详细机理,通过求解三维N-S方程的方法研究了节流流量、节流位置对节流效果的影响,同时对比了有无节流存在对超燃冲压发动机燃烧室流场结构和掺混特性的影响,分析了节流促进燃料高效混合的机理.结果表明:在燃烧室入口马赫数2、静温517.7K、静压101342.2Pa的条件下,20%入口空气流量的节流流量是最合适的节流流量,本文研究的实例中最佳节流位置位于距燃烧室入口623mm处,同时证实了节流有效地促进了燃料的混合,提高了混合效率. 相似文献
17.
为考察空气节流对超燃冲压发动机燃烧室的影响,非定常数值模拟和地面实验相结合证实了空气节流可以实现超燃燃烧室燃料稳定燃烧,研究了节流位置、节流流量、节流撤去时间对节流效果的影响。结果表明:在燃烧室入口马赫数2,静温548.8K,静压101555.9Pa条件下,745mm处节流时,激波串稳定时间较短,稳焰失败;875mm处节流时,火焰稳定成功。随着节流流量和节流撤去时间的增加,燃烧越来越剧烈,壁面压力逐渐升高,可能影响进气道的起动,对于本文来流条件,30%入口空气流量作为节流流量是合适的,440ms以前撤去空气节流是恰当的。 相似文献