首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
榫连接结构微动疲劳寿命研究   总被引:5,自引:1,他引:4  
根据航空发动机叶片和轮盘的榫连接结构接触区域的几何特性,对其微动疲劳接触问题进行了简化.通过有限元方法对简化模型进行数值计算分析,获取相应的应力、应变和位移.将临界平面法和微动损伤机理相结合,提出了一个微动损伤参量,并建立相应的微动疲劳寿命预测模型.将TC11试验件和榫连接构件的微动疲劳试验寿命与预测寿命进行比较分析.结果表明:所建立的微动疲劳寿命模型其预测结果误差分散带均在2倍因子以内.   相似文献   

2.
针对航空涡扇发动机压气机叶片/轮盘连接结构,设计了一种燕尾榫结构高温微动疲劳试验加载装置,开展了TC11钛合金在200℃及500℃下的微动疲劳试验。通过动态位移及动态应变法实现对燕尾榫微动疲劳萌生寿命的监测。试验中发现微动疲劳裂纹均萌生在燕尾榫接触区域的下边缘,且接触表面存在大量的微动磨屑,属于典型的微动疲劳失效形式。试验结果表明:温度环境对微动疲劳寿命的影响较为明显。随着试验温度的升高,试验件的微动疲劳寿命会逐渐减小。   相似文献   

3.
微动疲劳寿命可靠性分析方法   总被引:2,自引:2,他引:2  
针对结构的微动疲劳问题,发展了一种寿命可靠性分析方法.在微动条件下,接触区域处于多轴应力状态,采用基于临界平面法的多轴疲劳参数对结构的微动疲劳寿命进行预测.在确定性寿命计算的基础上,考虑弹性模量、摩擦系数以及寿命预测模型中材料常数的随机性,利用响应面方法,结合Monte-Carlo模拟技术获得结构微动疲劳寿命可靠性模型.最后将此方法用于燕尾榫结构的微动疲劳寿命可靠性分析,验证了所提出方法的可行性和有效性.   相似文献   

4.
设计和制造了一套采用液压加载方式来施加法向载荷的微动疲劳试验装置,并且在该装置上进行了各向异性材料DD3与粉末高温合金FGH95以及DZ125与FGH95配对接触的微动疲劳试验,研究其微动疲劳的损伤过程.各向异性材料微动疲劳试验的完成证明了该装置的性能良好.将微动综合损伤参量应用于各向异性材料微动损伤的表征,并建立了DD3和DZ125相应的微动疲劳寿命预测模型.通过微动综合损伤参量的计算分析与试验验证,表明所建立的各向异性材料微动疲劳寿命模型其预测结果误差分散带均在2.8倍因子以内.   相似文献   

5.
针对结构的微动疲劳问题,发展了一种寿命可靠性分析方法。在微动条件下,接触区域处于多轴应力状态,采用基于临界平面法的多轴疲劳参数对结构的微动疲劳寿命进行预测。在确定性寿命计算的基础上,考虑弹性模量、摩擦系数以及寿命预测模型中材料常数的随机性,利用响应面方法,结合Monte-Carlo模拟技术获得结构微动疲劳寿命可靠性模型。最后将此方法用于燕尾榫结构的微动疲劳寿命可靠性分析,验证了所提出方法的可行性和有效性。  相似文献   

6.
航空发动机主轴疲劳寿命预测方法   总被引:6,自引:4,他引:2  
陆山  陈倩  陈军 《航空动力学报》2010,25(1):148-151
对航空发动机主轴疲劳寿命分析多采用EGD-3斯贝MK202发动机应力标准中提供的方法.以某涡轮轴为对象,基于EGD-3方法,分别采用查图和有限元法计算得到的应力集中系数进行寿命估算;利用应力修正系数法对主轴低周疲劳寿命分析,并将结果与传统名义应力法计算结果对比.结果表明:运用应力修正系数法估算主轴低周疲劳寿命结果与EGD-3查图结果相当,是可行的;在高低周载荷下,使用有限元法计算应力集中系数的EGD-3方法计算的主轴疲劳寿命更符合实验结果.  相似文献   

7.
对航空发动机主轴疲劳寿命分析多采用斯贝MK202发动机应力标准EGD-3中提供的方法。本文以某涡轮轴为对象,基于EGD-3方法,分别采用通过查表和有限元法计算得到的应力集中系数进行寿命估算,并利用应力修正系数法对主轴低周疲劳寿命分析,并将结果与传统名义应力法计算结果对比。结果表明:运用应力修正系数法估算主轴低周疲劳寿命结果与EGD-3查表结果相当,是可行的;在高低周载荷下,使用有限元法计算应力集中系数的EGD-3方法计算的主轴疲劳寿命更符合实验结果。  相似文献   

8.
针对航空发动机叶片与盘榫连接结构简化模型的微动失效形式,建立了基于临界平面法预测微动疲劳裂纹萌生的控制模型。该模型引入综合考虑多种微动疲劳影响因素的微动损伤参量CSE(微动综合损伤参量),建立了微动疲劳特性的分析流程,对微动疲劳裂纹的萌生方向、位置和寿命进行了估算。应用CSE控制模型,对失效的TC11钛合金微动疲劳试件的裂纹萌生进行预测,通过比较不同损伤参量的预测结果,验证了CSE预测裂纹萌生的有效性。  相似文献   

9.
高低周载荷作用下燕尾榫结构的微动疲劳寿命预测   总被引:2,自引:1,他引:2       下载免费PDF全文
为预测在高周和低周载荷共同作用下,燕尾榫连接结构的微动疲劳寿命,采用高低周等效应力比代替传统经验预测模型中的等效应力,并考虑到摩擦功的影响,对微动疲劳寿命预测经验模型进行改进。通过燕尾榫连接结构的高低周微动疲劳试验,拟合了改进微动疲劳寿命预测模型中的三个系数;采用该模型对相关文献中的燕尾榫连接结构微动疲劳试验结果进行预测,结果表明,微动疲劳寿命预测的最大误差降低了约50%。  相似文献   

10.
以单卡头式微动疲劳试验装置为对象,设计了不同微动垫夹持型式的微动疲劳试验装置,建立了两种试验装置的物理模型,结合理论分析和有限元数值仿真,从微动垫夹持刚度的角度分析了影响微动疲劳寿命的主要因素,并进行了试验对比验证。结果表明:夹持刚度的减小对SWT(Smith Watson Topper)微动疲劳损伤参量的最大值及位置影响较小,且使其在接触区域的分布趋于对称,可显著地降低相对滑移幅值,进而减小微动疲劳过程中的磨损程度;与夹持刚度较大的试验装置相比,夹持刚度较小的试验装置测试得到的微动疲劳试验寿命较长。   相似文献   

11.
以ABAQUS有限元分析软件为工具,通过计算接触面上的接触应力p(x)及切向应力τ分布,求得了Ruiz微动损伤参数k2(x),并以此为基础,建立了一种微动疲劳寿命预测模型,经验证该模型预测值与实验值比较吻合,证明了该模型的合理、有效性。利用所得模型,研究了3种参数变化对微动疲劳寿命的影响,结果表明:在其他参数保持不变的情况下,随着接触压力的增加,微动疲劳寿命迅速下降,在达到一个最低值后,随着压力的增加寿命反而增加;微动疲劳寿命随轴向应力增加而下降;对于较低的接触压力,寿命随压头半径的增加而增加,但在较高的接触压力下,随着压头半径的变化寿命几乎保持不变。  相似文献   

12.
基于临界面法的燕尾榫连接结构微动疲劳寿命预测   总被引:2,自引:3,他引:2  
以航空发动机叶片/轮盘之间的燕尾榫连接结构为研究对象,分析了燕尾榫连接结构接触应力与应变的变化.根据多轴疲劳临界损伤平面原理,在燕尾榫连接结构的微动疲劳寿命预测研究中引入多轴临界平面法的疲劳损伤参数CCB (Chu-Conle-Bonnen),FS (Fatemi-Socie),MSSR (modified shear stress rang)和SWT (Smith-Watson-Topper).将预测寿命与试验寿命进行对比,结果表明:在预测微动疲劳寿命时,4个参数中寿命预测的最大误差为23%,可较好地预测低周微动疲劳寿命.其中基于临界平面法的SWT参数预测误差最小,为1.23%;4个参数均预测裂纹萌生位置在接触区末端,与试验结果一致.在预测裂纹萌生角度上,FS,MSSR,SWT参数预测结果与试验较一致,CCB参数预测结果与试验结果相差较大.说明基于临界平面法的寿命预测模型具有较好的预测能力.   相似文献   

13.
何明鉴 《航空学报》1991,12(6):307-310
1.结构模型 我国航空发动机的盘片榫联结一直是盘上轴向开槽。最近引进的西方发动机,有盘上周向开槽的燕尾榫或类似的圆弧榫。轴向开槽的燕尾榫的研究已有过报导。本文介绍对周向开槽结构的微动磨损疲劳特征的一些研究结果。  相似文献   

14.
通过微动疲劳损伤机理分析,以微动疲劳接触应力计算入手,建立了航空装备关键件中一种较为普遍的圆柱/平面接触微动疲劳结构的有限元全局模型和子模型,通过边界条件误差和离散误差分析,提高了计算精度和计算效率。以断裂力学为基础,根据复合型裂纹断裂判据,用改进的裂纹闭合积分法计算了裂纹尖端应力强度因子,引入应力强度因子影响系数,建立了微动疲劳裂纹扩展寿命预测模型,确定了模型中的参数,通过预测寿命与试验值的对比验证了该模型的正确、有效性。  相似文献   

15.
对钛合金桥式试件进行数值分析与微动疲劳试验研究,提出了用MSWT参数预测裂纹萌生位置的方法和基于MSWT参数的微动疲劳寿命预测模型。试验结果与断口分析表明:疲劳裂纹出现在微动试件的接触区边缘,与MSWT参数预测的裂纹萌生位置一致。利用桥式试件的微动疲劳试验数据,获得了寿命预测模型中的相关参数,并采用相关文献中燕尾榫连接结构的试验结果对该预测模型进行了验证。  相似文献   

16.
 本文详细地分析了LY_(12)CZ铝合金铆接件微动损伤的微观特征以及各种搭接表面处理方法对疲劳强度的影响。试验结果表明:对搭接表面采用恰当的处理方法,铆接件的疲劳寿命一般均有不同程度的提高,其中,胶铆结构的采用是防止铆接件产生微动损伤的有效措施。当轴向交变应力σ_(max)=125MPa以下时,胶铆试件的疲劳寿命比干涉铆接的疲劳寿命提高60%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号