共查询到7条相似文献,搜索用时 0 毫秒
1.
C. Bianchi J.A. BaskaradasM. Pezzopane M. PietrellaU. Sciacca E. Zuccheretti 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
It is well known that the ionosphere affects radio wave propagation especially in the high frequency (HF) range. HF radio waves reflected by the ionosphere can reach considerable distances, often with changes in amplitude, phase, and frequency. The ionosphere is a dispersive in frequency and time, bi-refractive, absorbing medium, in which multipath propagation due to traveling irregularities is very frequent. The traveling irregularities undulate the reflecting ionospheric layer, introducing variations in signal amplitude (fading). In this multipath time variant channel fading is mainly considered, even though it is not the sole effect. Echo signals from a single reflection, as in ionospheric vertical sounding (VIS) techniques, are affected by a certain degree of variability even in quiet ionospheric conditions. In this work the behavior of the ionospheric channel is studied and characterized by observing the power variation of received echoes using the VIS technique. Multipath fading was analyzed quantifying the power variation of the signal echo due to irregularities on a temporal scale from 0.5 to 256 s. An experimental set-up derived from an ionosonde was implemented and the analysis was performed employing a special numerical algorithm operating off-line on the acquired time sequence of the signal. The gain-loss of the irregularity shapes are determined in some special cases. 相似文献
2.
Jeongrae Kim Seung Woo Lee Hyung Keun Lee 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
An ionospheric spatial gradient represents the ionosphere delay difference between different locations, and its variation over a specific area is important for implementing differential GNSS systems. An estimation method for the ionospheric spatial gradient over a small regional area is proposed. A plate map model is implemented for the direct estimation of the gradients. Nine years of GPS data were processed to figure out the annual variation of the mean gradient at the mid-geomagnetic latitude of 30° N. Gradients along the north–south direction have a mean of 0.65 mm/km and follow solar-cycle variations. 相似文献
3.
Long-Song He Jin-Song Ping 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The occurrence characteristics of medium-scale travelling ionospheric disturbances (MSTIDs) were investigated using the Tasman International Geospace Environment Radar (TIGER). From the occurrence study of sea echoes, we found two maxima, one pre-noon and the other after noon. They are less obvious with increase of magnetic activities, and more obvious when Bz is northwards. It is suggested that this maxima were related to fore- and after-noon maxima in the distribution of net field-aligned currents flowing from the magnetosphere to the ionosphere, and that these two regions were sources of atmospheric gravity waves (AGWs) due to enhancement of Hall conductivities in the ionosphere. The Lorentz force is suggested to be a possible mechanism for the excitation of MSTIDs in the dayside ionosphere. 相似文献
4.
Chigomezyo M. Ngwira Lee-Anne McKinnell Pierre J. Cilliers Endawoke Yizengaw 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The effects of the 15 May 2005 severe geomagnetic storm on the South African ionosphere are studied using ground-based and satellite observations. Ionospheric disturbances have less frequently been investigated over mid-latitude regions. Recently, a number of studies investigated their evolution and generation over these regions. This paper reports on the first investigation of travelling ionospheric disturbances (TIDs) over mid-latitude South Africa. Using global positioning system (GPS)-derived total electron content (TEC) variations from the South African network of dual frequency GPS receivers, we were able to examine the effects of the disturbance on the TEC. During this storm, two TEC enhancements were observed at low- and mid-latitudes: the first enhancement was observed between 30–45°S geomagnetic latitudes associated with equatorward neutral winds and the passage of a TID, while the second TEC enhancement is associated with a second TID. In addition, the F-region critical frequency (foF2) values observed at two ionosonde stations show response features that differ from those of the TEC during the disturbance period. The dissimilarity between the TEC and the foF2 suggests that two competing drivers may have existed, i.e., the westward electric field and equatorward neutral wind effects. 相似文献
5.
6.
Qiang Guo Volodymyr G. Galushko Andriy V. Zalizovski Sergiy B. Kashcheyev Yu Zheng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(9):2267-2274
A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network. 相似文献
7.
Mei Li Michel Parrot 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(3):974-984
Results of a statistical variation of total ion density observed in the vicinity of epicenters as well as around magnetically conjugated points of earthquakes are presented in this paper. Two data sets are used: the ion density measured by DEMETER during about 6.5?years and the list of strong earthquakes (MW?≥?4.8) occurring globally during this period (14,764 earthquakes in total). First of all, ionospheric perturbations with 23–120?s observation time corresponding to spatial scales of 160–840?km are automatically detected by a software (64,287 anomalies in total). Second, it is checked if a perturbation could be associated either with the epicenter of an earthquake or with its magnetically conjugated point (distance?<?1500?km and time?<?15?days before the earthquake). The index Kp?<?3 is also considered in order to reduce the effect of the geomagnetic activity on the ionosphere during this period. The results show that it is possible to detect variations of the ionospheric parameters above the epicenter areas as well as above their conjugated points. About one third of the earthquakes are detected with ionospheric influence on both sides of the Earth. There is a trend showing that the perturbation length increases as the magnitude of the detected EQs but it is more obvious for large magnitude. The probability that a perturbation appears is higher on the day of the earthquake and then gradually decreases when the time before the earthquake increases. The spatial distribution of perturbations shows that the probability of perturbations appearing southeast of the epicenter before an earthquake is a little bit higher and that there is an obvious trend because perturbations appear west of the conjugated point of an earthquake. 相似文献