首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

2.
The Indian sector encompasses the equatorial and low latitude regions where the ionosphere is highly dynamic and is characterized by the equatorial ionization anomaly (EIA) resulting in large latitudinal electron density gradients causing errors and uncertainties in the estimation of range delays in satellite based navigation systems. The diurnal and seasonal variations of standard deviations in the TEC data measured during the low sunspot period 2004–2005 at 10 different Indian stations located from equator to the anomaly crest region and beyond are examined and presented. The day-to-day variability in TEC is found to be lowest at the equatorial station and increases with latitude up to the crest region of EIA and decreases beyond.  相似文献   

3.
Ionosphere delay correction is the main error correction to the computation of single frequency user position using satellite navigation. However ionosphere delay consists of not only delay but also frequency dependent differential hardware biases from satellite and receiver ends. For ionosphere point of view, Indian Regional Navigation Satellite System (IRNSS) service area comes in equatorial anomaly region. It is a unique satellite navigation system which operates at L5 and S frequencies and consists of Geostationary Earth Orbit (GEO) and Geo Synchronous Orbit (GSO) satellite constellation. With IRNSS measurements availability, there is a good opportunity to estimate and analyse differential hardware biases with GEO/GSO combination and with equatorial ionosphere variation. In this paper, Kalman filter based estimation with triangular interpolation technique is used to estimate differential hardware biases for all IRNSS satellites and reference receivers at L5 frequency. The standard deviation of the 15?days of daily estimation of satellite differential hardware biases is in the range of 0.32 to 1.17 TECU for all IRNSS satellites. Similarly, the standard deviation of the 15?days of daily estimation varies up to 2.85 and 6.0 TECU for receiver differential hardware biases during calm and stormy period respectively. The ionosphere delay computed using estimated differential hardware biases is compared with Global Ionosphere Map (GIM) data. A rigorous analysis is carried out to study the error in the estimation in terms of input data noise level, satellite constellation and effect of latitude. Our result reveals that over IRNSS service area, there is an exponential increase in the error in the estimation of receiver differential hardware biases with respect to latitude.  相似文献   

4.
针对电离层周日变化特征分析了其可能对SCORE方法估算的硬件延迟稳定性的影响. 利用BJFS以及XIAM台站的GPS观测数据, 解算了位于太阳活动高年(2001年)和太阳活动低年(2009年)的卫星硬件延迟并分析了估算的硬件延迟的稳定性. 研究发现, 电离层周日变化对估算的硬件延迟稳定性具有一定影响, 但是利用不同台站所得到的卫星硬件延迟稳定性在昼夜不同时间上的解算结果存在一定差异. 电离层周日变化对利用 BJFS台站数据解算的硬件延迟稳定性日夜差异较为明显, 在太阳活动高年利用XIAM 台站数据解算的硬件延迟日夜稳定性差异不很明显, 由于XIAM台站处于电离层赤道异常峰附近, 夜间电离层变化很大, 因此对比中纬度地区, 电离层周日变化对赤道异常峰附近地区硬件延迟稳定性解算结果的影响相对较小, 但在太阳活动低年, 其影响仍较为显著.   相似文献   

5.
It is important to use models developed specifically for the equatorial ionospheric estimation for real-time applications, particularly in Satellite Navigation. This work demonstrates a methodology for improved predictions of VTEC in real time using the model developed for the equatorial ionosphere by the authors. This work has been done using TEC data of the low solar activity period of 2005 obtained using dual frequency GPS receivers installed under the GAGAN project of ISRO. For the purpose, the model is first used in conjunction with Kriging technique. Improvement in accuracy is observed when compared with the estimations from the model alone using the measurements as true reference. Further improvement is obtained by Bayesian combination of these estimates with independent Neural Network based predictions. Statistical performance of improvement is provided. An improvement of ∼1 m in confidence level of estimation of VTEC is obtained.  相似文献   

6.
The Ionospheric Total Electron Content is responsible for the group delay of the signals from the Navigation satellites. This delay causes ranging error, which in turn degrades the accuracy of position estimated by the receivers. For critical applications, single frequency receivers resort to Satellite Based Augmentation Systems in order to have improved accuracy and integrity. The performance of these systems in terms of accuracy can be improved if predictions of the delays are available simultaneously with real measurements. This paper attempts to predict the Total Electron Content using adaptive recurrent Neural Network at three different locations of India. These locations are selected at the magnetic equator, at the equatorial anomaly crest and outside the anomaly range, respectively. In-situ Learning Algorithm has been used for tracking the non-stationary nature of the variation. Prediction is done for different prediction intervals. It is observed that, for each case, the mean and root mean square values of prediction errors remain small enough for all practical applications. Analysis of Variance is also done on the results.  相似文献   

7.
The vertical ionospheric TEC values obtained from GAGAN grid based ionospheric delay correction values over the sea in the Indian equatorial region have been compared with the corresponding values derived from the International Reference Ionosphere model, IRI-2016. The objective of this work is to study the deviation of the vertical TEC derived from the IRI model from ground truths over the sea for different conditions. This will serve the basic intention of assessing the candidature of the IRI model as an alternative ionospheric correction model in navigation receivers in terms of accuracy. We have chosen different solar activity periods, seasons, geomagnetic conditions, locations etc. for our comparison and analysis. The TEC values by the IRI-2016 were compared with the actual measured values for the given conditions and errors were obtained. The measured vertical TEC values at the ionospheric grid points were derived from the GAGAN broadcast ionospheric delay data and used as reference. The IRI model with standard internal functions was used in estimating the TEC at the same ionospheric grid points. The errors in the model derived values are statistically analysed. Broadly, the results show that, for the Indian sector over the sea, the IRI model performs better on quiet days in off equatorial regions, particularly in the northern region. The overall performance degrades for other conditions with the model generally underestimating the true TEC values and most severely in the equatorial region. The performance is worst in this region for the disturbed days of the equinoctial period. The comparison study is also done with the TEC data measured directly by dual frequency GPS receivers. The results were found to be in general agreement with those obtained by comparing the model with GAGAN broadcast data as reference. This study will be useful in considering the IRI-2016 model for real time estimates of TEC as an alternative to the current parametric model in a satellite navigation receiver in absence of other options.  相似文献   

8.
The ionospheric total electron content (TEC), derived by analyzing dual frequency signals from the Global Positioning System (GPS) recorded near the Indian equatorial anomaly region, Varanasi (geomagnetic latitude 14°, 55′N, geomagnetic longitude 154°E) is studied. Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the solar minimum period from May 2007 to April 2008. It is found that the daily maximum TEC near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semiannual variation is seen with two maxima occurring in both spring and autumn. Statistical studies indicate that the variation of EIA crest in TEC is poorly correlated with Dst-index (r = −0.03) but correlated well with Kp-index (r = 0.82). The EIA crest in TEC is found to be more developed around 12:30 LT.  相似文献   

9.
We have studied the time delay of ionospheric storms to geomagnetic storms at a low latitude station Taoyuan (25.02°N, 121.21°E), Taiwan using the Dst and TEC data during 126 geomagnetic storms from the year 2002 to 2014. In addition to the known local time dependence of the time delay, the statistics show that the time delay has significant seasonal characteristics, which can be explained within the framework of the seasonal characteristics of the ionospheric TEC. The data also show that there is no correlation between the time delay and the intensity of magnetic storms. As for the solar activity dependence of the time delay, the results show that there is no relationship between the time delay of positive storms and the solar activity, whereas the time delay of negative storms has weakly negative dependence on the solar activity, with correlation coefficient −0.41. Especially, there are two kinds of extreme events: pre-storm response events and long-time delay events. All of the pre-storm response events occurred during 15–20 LT, manifesting the Equator Ionospheric Anomaly (EIA) feature at Taoyuan. Moreover, the common features of the pre-storm response events suggest the storm sudden commencement (SSC) and weak geomagnetic disturbance before the main phase onset (MPO) of magnetic storms are two main possible causes of the pre-storm response events. By analyzing the geomagnetic indices during the events with long-time delay, we infer that this kind of events may not be caused by magnetic storms, and they might belong to ionospheric Q-disturbances.  相似文献   

10.
In this investigation, we present and discuss the effects of 6 X2-class solar flare events in the ionospheric F region over Brazilian sector that occurred during 2013 to 2015. For this investigation, we present the vertical total electron content (VTEC) observations from nearly 120 Global Positioning System (GPS) receivers all over the Brazilian sector for each event. Also, ionospheric sounding observations obtained in São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S; hereafter referred to as SJC), under the southern crest of the equatorial ionospheric anomaly (EIA), Brazil, are presented. The observations show that the greatest TEC impact occurs with the EUV fluxes increases lasting for more than one hour and when the solar active region is located close to the solar disc center. We present a detailed study of the efficiency of the EUV flux with wavelengths ranging from 0.1 to 190?nm for the F region ionization. The largest increase of ΔTEC occurs below the magnetic equator line, covering mainly the central, northeast, southeast and south regions, which includes the equatorial ionospheric anomaly (EIA) region. The ionograms show partial or total fade out in the echoes traces observed causing blackouts of radio signals of up to 60?min, which can have serious consequences to technological systems of public and private agencies around Brazilian sector. This study can help to better understand the effects of solar flares in the ionospheric F region.  相似文献   

11.
The highest Total Electron Content (TEC) values in the world normally occur at Equatorial Ionization Anomaly (EIA) region resulting in largest ionospheric range delay values observed for any potential Space Based Augmentation System (SBAS). Reliable forecasting of TEC is crucial for satellite based navigation systems. The day to day variability of the location of the anomaly peak and its intensity is very large. This imposes severe limitations on the applicability of commonly used ionospheric models to the low latitude regions. It is necessary to generate a mathematical ionospheric forecasting and mapping model for TEC based on physical ionospheric influencing parameters. A model, IRPE-TEC, has been developed based on real time low latitude total electron content data using GPS measurements from a number of stations situated around the northern crest of the EIA during 2007 through 2011 to predict the vertical TEC values during the low and moderate solar activity levels of the 24th solar cycle. This model is compared with standard ionospheric models like International Reference Ionosphere (IRI) and Parameterized Ionospheric Model (PIM) to establish its applicability in the equatorial region for accurate predictions.  相似文献   

12.
Using the TEC data at Beijing (39.61°N, 115.89°E)/Yakutsk (62.03°N, 129.68°E) stations of East Asia regions and relevant geomagnetic data from 2010 to 2017, we have studied the time delay of ionospheric storms to geomagnetic storms and compare it with our previous results of Taoyuan (25.02°N, 121.21°E) station (Zhang et al., 2020). The data shows a well-known local time dependence of the time delay, and seasonal dependences are different at these stations. In addition, there is no correlation between the time delay and the magnetic storm intensity /solar activity, except the time delay of negative storms has weakly negative dependence on the solar activity. Comparing with the results of Taoyuan station which is located at EIA region in East Asia, we find that the time delay increases nonlinearly as the latitude decreases due to different ionospheric backgrounds at these places. Moreover, the pre-storm disturbance events are found to have similar statistical characteristics as the pre-storm enhancement in Europe middle latitudes (Bure?ová and La?tovi?ka, 2007). By subtracting the common features of the pre-storm disturbance events, we preliminarily infer that auroral activity might be main driver of the pre-storm disturbance events.  相似文献   

13.
This work presents, for the first time, the analysis of the occurrence of ionospheric irregularities during geomagnetic storms at Tucumán, Argentina, a low latitude station in the Southern American longitudinal sector (26.9°S, 294.6°E; magnetic latitude 15.5°S) near the southern crest of the equatorial ionization anomaly (EIA). Three geomagnetic storms occurred on May 27, 2017 (a month of low occurrence rates of spread-F), October 12, 2016 (a month of transition from low to high occurrence rates of spread-F) and November 7, 2017 (a month of high occurrence rates of spread-F) are analyzed using Global Positioning System (GPS) receivers and ionosondes. The rate of change of total electron content (TEC) Index (ROTI), GPS Ionospheric L-band scintillation, the virtual height of the F-layer bottom side (h'F) and the critical frequency of the F2 layer (foF2) are considered. Furthermore, each ionogram is manually examined for the presence of spread-F signatures.The results show that, for the three events studied, geomagnetic activity creates favorable conditions for the initiation of ionospheric irregularities, manifested by ionogram spread-F and TEC fluctuation. Post-midnight irregularities may have occurred due to the presence of eastward disturbance dynamo electric fields (DDEF). For the May storm, an eastward over-shielding prompt penetration electric field, (PPEF) is also acting. A possibility is that the PPEF is added to the DDEF and produces the uplifting of the F region that helps trigger the irregularities. Finally, during October and November, strong GPS L band scintillation is observed associated with strong range spread-F (SSF), that is, irregularities extending from the bottom-side to the topside of the F region.  相似文献   

14.
This study presents unique perspectives of occurrence and strength of low latitude ionospheric scintillations on multiple signals of Global Navigation Satellite System (GNSS) and its frequency dependence using continuous observation records of 780 nights. A robust comparative analysis is performed using scintillation index, S4 and its variation during pre-midnight and post-midnight duration from a GNSS receiver located at Waltair (17.7°N, 83.3°E), India, covering period from July 2014 to August 2016. The results, generally exhibit the impact of declining phase of solar cycle 24 on occurrence and strength of scintillations, which, however, is evidently different over different frequencies transmitted from different GNSS systems. A deeper quantitative analysis uniquely reveals that apart from the solar cycle and seasonal effects, the number of visible satellites of a selected GNSS markedly affect the occurrence and also the strength. Processing scheme of adopting 6 hourly time windows of pre-midnight and post-midnight brought a novel result that the strength and occurrence of strong scintillations decrease with declining solar activity during pre-midnight hours but remarkably increase for moderate and weak scintillations during post-midnight. The physical processes that dominate the post-midnight equatorial ionosphere are invoked to explain such variations that are special during declining solar activity. Finally, inter-GNSS signal analysis in terms of the effect of strong, moderate and weak scintillations is presented with due consideration of number of satellite passes affected and frequency dependence of mean S4. The quantitative results of this study emphasize for the first time effect of low latitude scintillation on GNSS signals in Indian zone under changing background solar and seasonal conditions.  相似文献   

15.
In this paper, the AdaBoost-BP algorithm is used to construct a new model to predict the critical frequency of the ionospheric F2-layer (foF2) one hour ahead. Different indices were used to characterize ionospheric diurnal and seasonal variations and their dependence on solar and geomagnetic activity. These indices, together with the current observed foF2 value, were input into the prediction model and the foF2 value at one hour ahead was output. We analyzed twenty-two years’ foF2 data from nine ionosonde stations in the East-Asian sector in this work. The first eleven years’ data were used as a training dataset and the second eleven years’ data were used as a testing dataset. The results show that the performance of AdaBoost-BP is better than those of BP Neural Network (BPNN), Support Vector Regression (SVR) and the IRI model. For example, the AdaBoost-BP prediction absolute error of foF2 at Irkutsk station (a middle latitude station) is 0.32 MHz, which is better than 0.34 MHz from BPNN, 0.35 MHz from SVR and also significantly outperforms the IRI model whose absolute error is 0.64 MHz. Meanwhile, AdaBoost-BP prediction absolute error at Taipei station from the low latitude is 0.78 MHz, which is better than 0.81 MHz from BPNN, 0.81 MHz from SVR and 1.37 MHz from the IRI model. Finally, the variety characteristics of the AdaBoost-BP prediction error along with seasonal variation, solar activity and latitude variation were also discussed in the paper.  相似文献   

16.
基于子午工程北大深圳站(22.59°N,113.97°E)电离层GPS双频接收机在2011年1月1日至2017年12月31日连续7年的长时间序列闪烁和TEC观测数据,分析不同太阳活条件下华南赤道异常北驼峰区观测到的GPS卫星L波段电离层闪烁事件时空分布特征及其对通信的影响.结果表明:GPS闪烁事件几乎都发生在夜间,且主要发生在春秋分月份;在不同太阳活动条件下,夜间GPS闪烁事件都主要发生在北驼峰区域靠近磁赤道的一侧,且GPS闪烁事件存在明显的东-西侧天区不对称性,即在台站西侧天区发生的闪烁事件明显偏多;在不同太阳活动条件下,弱闪烁事件伴随的TEC耗尽和卫星失锁事件比例相对较低,强闪烁事件则大部分都伴随着TEC耗尽和卫星失锁事件的发生.   相似文献   

17.
电离层延迟误差是全球导航卫星系统(global navigation satellite system,GNSS)中的重要误差源之一.目前在电离层延迟改正模型中,应用最广泛的是Klobuchar参数模型,但是该模型的改正率仅能达到60%左右,无法满足日益增长的精度需求.将国际GNSS监测评估系统(internation...  相似文献   

18.
The F layer critical frequency (foF2) as measured by Digisondes in the equatorial and low latitude locations in Brazil is analyzed to investigate the seasonal and solar flux controls of the intensity of the equatorial ionization anomaly (EIA) in the equinoctial month of March. The analysis also included the total electron content (TEC) as measured by a GPS receiver operated at the EIA crest location. The foF2 data set covered a period of large solar flux variation from 1996 to 2003, while the GPS TEC data was for a period in 2002–2003 when the solar flux parameter F10.7 underwent large variations, permitting in both cases an examination of the solar flux effects on these parameters. The seasonal variation pattern in TEC shows a maximum in equinoctial months and a minimum in June solstice, with similar variations for foF2. The solar flux dependence of the TEC is a maximum during equinoxes, especially for post-sunset TEC values at times when the latitudinal distribution is controlled by the equatorial evening plasma fountain processes. Significant variations with local time are found in the degree of solar flux dependence for both the TEC and EIA. The EIA intensity shows large dependence on F10.7 during post-sunset to midnight hours. These results are discussed in comparison with their corresponding IRI representations.  相似文献   

19.
We proposed an ionospheric correction approach called NKlob to mitigate the ionospheric delay errors. NKlob is a modification of the original GPS Ionospheric Correction Algorithm (ICA), which uses an empirical night-time model depending on the time, geomagnetic location and periodicities of the ionospheric behavior to replace the night-time constant delay in GPS ICA. Performance of NKlob was evaluated by the independent total electron contents (TECs) derived from Global Ionospheric Maps (GIMs) of the International GNSS Services (IGS) and Jason-2 altimetry satellite during 2013–2017. Compared to GIM TECs, NKlob corrects 51.5% of the ionospheric delay errors, which outperforms GPS ICA by 6.3%. Compared to Jason-2 TECs, NKlob mitigates the ionospheric errors by 58.1%, which is approximately 3.7% better than that of GPS ICA. NKlob shows significant improvement in low-latitude and equatorial regions with respect to GPS ICA, meanwhile exhibiting comparable performance at middle and high latitudes. Since NKlob only requires slight technical changes at the processing level of GPS receivers, we suppose that it can be easily implemented for better ionospheric delay corrections of real-time GPS single-frequency applications.  相似文献   

20.
The Earth's ionosphere and especially its equatorial part is a highly dynamical medium. Geostationary satellites are known to be a powerful tool for ionospheric studies. Recent developments in BDS-GEO satellites allow such studies on the new level due to the best noise pattern in TEC estimations, which corresponds to those of GPS/GLONASS systems. Here we used BDS-GEO satellites to demonstrate their capability for studying equatorial ionosphere variability on different time scales. Analyzing data from the equatorial SIN1 IGS station we present seasonal variations in geostationary slant TEC for the periods of high (October 2013 - October 2014) and low (January 2017 - January 2018) solar activity, which show semi-annual periodicity with amplitudes about 10 TECU during solar maximum and about 5 TECU during the solar minimum. The 27-day variations are also prominent in geostationary slant TEC variations, which correlates quite well with the variations in solar extreme UV radiation. We found semi-annual pattern in small scale ionospheric disturbances evaluated based on geostationary ROTI index: maximal values correspond to spring and fall equinoxes and minimum values correspond to summer and winter solstices. The seasonal asymmetry in ROTI values was observed: spring equinox values were almost twice as higher than fall equinox ones. We also present results on the 2017 May 28–29 G3 geomagnetic storm, when ~30 TECU positive anomaly was recorded, minor and final major sudden stratospheric warmings in February and March 2016, with positive daytime TEC anomalies up to 15–20 TECU, as well as the 2017 September 6 X9.3 solar flare with 2 TECU/min TEC rate. Our results show the large potential of geostationary TEC estimations with BDS-GEO signals for continuous monitoring of space weather effects in low-latitude and equatorial ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号