首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.  相似文献   

2.
PPP with low-cost, single-frequency receivers has been receiving increasing interest in recent years because of its large amount of possible users. One crucial issue in single-frequency PPP is the mitigation of ionospheric delays which cannot be removed by combining observations on different frequencies. For this purpose, several approaches have been developed, such as, the approach using ionospheric model corrections with proper weight, the GRAPHIC (Group and Phase Ionosphere Calibration) approach, and the method to model ionospheric delays over a station with a low polynomial or stochastic process. From our investigation on the stochastic characteristics of the ionospheric delay over a station, it cannot be precisely represented by either a deterministic model in the form of a low-order polynomial or a stochastic process for each satellite, because of its strong irregular spatial and temporal variations. Therefore, a novel approach is developed accordingly in which the deterministic representation is further refined by a stochastic process for each satellite with an empirical model for its power density. Furthermore, ionospheric delay corrections from a constructed model using GNSS data are also included as pseudo-observations for a better solution. A large data set collected from about 200 IGS stations over one month in 2010 is processed with the new approach and several commonly adopted approaches for validation. The results show its significant improvements in terms of positioning accuracy and convergence time with a negligible extra processing time, which is also demonstrated by data collected with a low-cost, handheld, single-frequency receiver.  相似文献   

3.
The Quasi-Zenith Satellite System (QZSS) established by the Japan Aerospace Exploration Agency mainly serves the Asia-Pacific region and its surrounding areas. Currently, four in-orbit satellites provide services. Most users of GNSS in the mass market use single-frequency (SF) receivers owing to the low cost. Therefore, it is meaningful to analyze and evaluate the contribution of the QZSS to SF precise point positioning (PPP) of GPS/BDS/GLONASS/Galileo systems with the emergence of GNSS and QZSS. This study compares the performances of three SF PPP models, namely the GRoup and PHase Ionospheric Correction (GRAPHIC) model, GRAPHIC with code observation model, and an ionosphere-constrained model, and evaluated the contribution of the QZSS to the SF PPP of GPS/BDS/GLONASS/Galileo systems. Moreover, the influence of code bias on the SF PPP of the BDS system is also analyzed. A two-week dataset (DOY 013–026, 2019) from 10 stations of the MGEX network is selected for validation, and the results show that: (1) For cut-off elevation angles of 15, 20, and 25°, the convergence times for the static SF PPP of GLONASS + QZSS are reduced by 4.3, 30.8, and 12.7%, respectively, and the positioning accuracy is similar compared with that of the GLONASS system. Compared with the BDS single system, the convergence times for the static SF PPP of BDS + QZSS under 15 and 25° are reduced by 37.6 and 39.2%, the horizontal positioning accuracies are improved by 18.6 and 14.1%, and the vertical components are improved by 13.9 and 21.4%, respectively. At cut-off elevation angles of 15, 20, and 25°, the positioning accuracy and precision of GPS/BDS/GLONASS/Galileo + QZSS is similar to that of GPS/BDS/GLONASS/Galileo. And the convergence times are reduced by 7.4 and 4.3% at cut-off elevation angles of 20 and 25°, respectively. In imitating dynamic PPP, the QZSS significantly improves the positioning accuracy of BDS and GLONASS. However, QZSS has little effect on the GPS-only, Galileo-only and GPS/BDS/GLONASS/Galileo. (2) The code bias of BDS IGSO and MEO cannot be ignored in SF PPP. In static SF PPP, taking the frequency band of B1I whose multipath combination is the largest among the frequency bands as an example, the vertical component has a systematic bias of approximately 0.4–1.0 m. After correcting the code bias, the positioning error in the vertical component is lower than 0.2 m, and the positioning accuracy in the horizontal component are improved accordingly. (3) The SF PPP model with ionosphere constraints has a better convergence speed, while the positioning accuracy of the three models is nearly equal. Therefore the GRAPHIC model can be used to get good positioning accuracy in the absence of external ionosphere products, but its convergence speed is slower.  相似文献   

4.
基于单频星载GPS数据的低轨卫星精密定轨   总被引:1,自引:0,他引:1  
为满足搭载单频GPS接收机低轨卫星的精密定轨需求以及深化单频定轨研究,文中解决了单频星载GPS数据的周跳探测问题,并利用“海洋二号”(HY-2A)卫星及“资源三号”(ZY-3)卫星的单频星载GPS实测数据采用两种方法确定了二者的简化动力学轨道,并通过观测值残差分析、与双频精密轨道比较、激光测卫数据检核等方法对所得轨道精度进行评定。结果表明,在不考虑电离层延迟影响的情况下,HY-2A卫星定轨精度为2~3dm,ZY-3卫星为1m左右;而采用半和改正组合消除电离层延迟一阶项影响后,二者定轨精度均显著提高,HY-2A卫星三维精度提高至1dm左右,ZY-3卫星提高至1~2dm。文章的研究成果表明,搭载单频GPS接收机的低轨卫星也可获得厘米级的定轨精度。  相似文献   

5.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   

6.
In order to speed up Precise Point Positioning (PPP)’s convergence, a combined PPP method with GPS and GLONASS which is based on using raw observations is proposed, and the positioning results and convergence time have been compared with that of single system. The ionospheric delays and receiver’s Differential Code Bias (DCB) corrections are estimated as unknown parameters in this method. The numerical results show that the combined PPP has not caused significant impacts on the final solutions, but it greatly improved Position Dilution of Precision (PDOP) and convergence speed and enhanced the reliability of the solution. Meanwhile, the convergence speed is greatly influenced by the receiver’s DCB, positioning results in horizontal which are better than 10 cm can be realized within 10 min. In addition, the ionosphere and DCB products can be provided with high precision.  相似文献   

7.
For precise position services, the real-time precise point positioning (PPP) is a promising technology. The real-time PPP performance is expected to be improved by multi-system combination. The performance of real-time multi-system PPP needs to be periodically investigated, with the increasing number of available satellites and the continuously improved quality of real-time precise products of satellite clocks and orbits. In this study, a comprehensive performance assessment is conducted for the four-system integrated real-time PPP (FSIRT-PPP) with GPS, BDS, Galileo and GLONASS in both static and kinematic modes. The datasets from 118 stations spanning approximately a month are used for analysis, and the real-time stream CLK93 is employed. The superior performance of FSIRT-PPP is validated by comparing with the results of GPS/BDS, GPS/Galileo, GPS/GLONASS, GPS-only, BDS-only, Galileo-only and GLONASS-only cases. The FSIRT-PPP using ionospheric-free (IF) combined observables can achieve a convergence time of 10.9, 4.8 and 11.8 min and a positioning accuracy of 0.4, 0.5 and 0.7 cm in the static mode in the east, north and up directions, respectively, while the derived statistic is 15.4, 7.0 and 16.4 min, and 1.6, 1.2 and 3.4 cm in the kinematic mode in the three directions, respectively. Moreover, we also compare the position solutions of real-time PPP adopting IF combined and uncombined (UC) observables, and prove the mathematical equivalence between the two PPP models in the converged stage, provided that there are no external ionospheric corrections or constraints given to the estimated ionospheric delays in the UC model. The difference between the fully converged positioning accuracy of IF-based and UC-based real-time PPP is marginal, but the UC-based real-time PPP has longer convergence time due to the influence of the significant unmodeled time-varying errors in the real-time precise products as well as the different parameterization between them. For completeness, the real-time kinematic PPP results in harsh environments and the post-processed PPP results are also presented.  相似文献   

8.
Evaluation of COMPASS ionospheric model in GNSS positioning   总被引:1,自引:0,他引:1  
As important products of GNSS navigation message, ionospheric delay model parameters are broadcasted for single-frequency users to improve their positioning accuracy. GPS provides daily Klobuchar ionospheric model parameters based on geomagnetic reference frame, while the regional satellite navigation system of China’s COMPASS broadcasts an eight-parameter ionospheric model, COMPASS Ionospheric Model(CIM), which was generated by processing data from continuous monitoring stations, with updating the parameters every 2 h. To evaluate its performance, CIM predictions are compared to ionospheric delay measurements, along with GPS positioning accuracy comparisons. Real observed data analysis indicates that CIM provides higher correction precision in middle-latitude regions, but relatively lower correction precision for low-latitude regions where the ionosphere has much higher variability. CIM errors for some users show a common bias for in-coming COMPASS signals from different satellites, and hence ionospheric model errors are somehow translated into the receivers’ clock error estimation. In addition, the CIM from the China regional monitoring network are further evaluated for global ionospheric corrections. Results show that in the Northern Hemisphere areas including Asia, Europe and North America, the three-dimensional positioning accuracy using the CIM for ionospheric delay corrections is improved by 7.8%–35.3% when compared to GPS single-frequency positioning ionospheric delay corrections using the Klobuchar model. However, the positioning accuracy in the Southern Hemisphere is degraded due apparently to the lack of monitoring stations there.  相似文献   

9.
基于空间统计方法的电离层折射修正技术   总被引:1,自引:0,他引:1  
黄智  袁洪 《空间科学学报》2012,32(2):209-215
针对中国上空电离层所具有的特殊性和GPS观测站在中国西部分布相对稀疏的特点, 尝试探索中国卫星增强系统电离层时延信息修正技术, 为卫星导航定位以及遥感、遥测等空间应用工程的电波修正提供数据. 利用中国地壳形变监测网提供的双频GPS数据, 以空间统计方法为主要工具, 给出了普通Kriging电离层估计算法, 构建了平静期和磁暴期电离层理论变异模型, 详细分析了电离层折射修正的精度. 结果表明, 将空间统计方法应用于卫星增强系统中的电离层时延改正问题, 有利于提高增强系统的电离层折射修正精度, 特别是在观测样点相对较少的情况下, 有利于系统完整性的实现.   相似文献   

10.
Motivated by the IGS real-time Pilot Project, GFZ has been developing its own real-time precise positioning service for various applications. An operational system at GFZ is now broadcasting real-time orbits, clocks, global ionospheric model, uncalibrated phase delays and regional atmospheric corrections for standard PPP, PPP with ambiguity fixing, single-frequency PPP and regional augmented PPP. To avoid developing various algorithms for different applications, we proposed a uniform algorithm and implemented it into our real-time software. In the new processing scheme, we employed un-differenced raw observations with atmospheric delays as parameters, which are properly constrained by real-time derived global ionospheric model or regional atmospheric corrections and by the empirical characteristics of the atmospheric delay variation in time and space. The positioning performance in terms of convergence time and ambiguity fixing depends mainly on the quality of the received atmospheric information and the spatial and temporal constraints. The un-differenced raw observation model can not only integrate PPP and NRTK into a seamless positioning service, but also syncretize these two techniques into a unique model and algorithm. Furthermore, it is suitable for both dual-frequency and sing-frequency receivers. Based on the real-time data streams from IGS, EUREF and SAPOS reference networks, we can provide services of global precise point positioning (PPP) with 5–10 cm accuracy, PPP with ambiguity-fixing of 2–5 cm accuracy, PPP using single-frequency receiver with accuracy of better than 50 cm and PPP with regional augmentation for instantaneous ambiguity resolution of 1–3 cm accuracy. We adapted the system for current COMPASS to provide PPP service. COMPASS observations from a regional network of nine stations are used for precise orbit determination and clock estimation in simulated real-time mode, the orbit and clock products are applied for real-time precise point positioning. The simulated real-time PPP service confirms that real-time positioning services of accuracy at dm-level and even cm-level is achievable with COMPASS only.  相似文献   

11.
Presently, the ionosphere effect is the main source of the error in the Global Positioning System (GPS) observations. This effect can largely be removed by using the two-frequency measurements, while to obtain the reasonable results in the single-frequency applications, an accurate ionosphere model is required. Since the global ionosphere models do not meet our needs everywhere, the local ionosphere models are developed. In this paper, a rapid local ionosphere model over Iran is presented. For this purpose, the GPS observations obtained from 40 GPS stations of the Iranian Permanent GPS Network (IPGN) and 16 other GPS stations around Iran have been used. The observations have been selected under 2014 solar maximum, from the days 058, 107, 188 and 271 of the year 2014 with different geomagnetic activities. Moreover, ionospheric observables based on the precise point positioning (PPP) have been applied to model the ionosphere. To represent our ionosphere model, the B-spline basis functions have been employed and the variance component estimation (VCE) method has been used to regularize the problem.To show the efficiency our PPP-derived local ionosphere model with respect to the International GNSS Service (IGS) global models, these models are applied on the single point positioning using single-frequency observations and their results are compared with the precise coordinates obtained from the double-differenced solution using dual-frequency observations. The results show that the 95th percentile of horizontal and vertical positioning errors of the single-frequency point positioning are about 3.1 and 13.6?m, respectively, when any ionosphere model are not applied. These values significantly improve when the ionosphere models are applied in the solutions. Applying CODE’s Rapid Global ionosphere map (CORG), improvements of 59% and 81% in horizontal and vertical components are observed. These values for the IGS Global ionosphere map (IGSG) are 70% and 82%, respectively. The best results are obtained from our local ionosphere model, where 84% and 87% improvements in horizontal and vertical components are observed. These results confirm the efficiency of our local ionosphere model over Iran with respect to the global models. As a by-product, the Differential Code Biases (DCBs) of the receivers are also estimated. In this line, we found that the intra-day variations of the receiver DCBs could be significant. Therefore, these variations must be taken into account for the precise ionosphere modeling.  相似文献   

12.
Integer ambiguity resolution (IAR) can improve precise point positioning (PPP) performance significantly. IAR for PPP became a highlight topic in global positioning system (GPS) community in recent years. More and more researchers focus on this issue. Progress has been made in the latest years. In this paper, we aim at investigating and demonstrating the performance of a global zero-differenced (ZD) PPP IAR service for GPS users by providing routine ZD uncalibrated fractional offsets (UFOs) for wide-lane and narrow-lane. Data sets from all IGS stations collected on DOY 1, 100, 200 and 300 of 2010 are used to validate and demonstrate this global service. Static experiment results show that an accuracy better than 1 cm in horizontal and 1–2 cm in vertical could be achieved in ambiguity-fixed PPP solution with only hourly data. Compared with PPP float solution, an average improvement reaches 58.2% in east, 28.3% in north and 23.8% in vertical for all tested stations. Results of kinematic experiments show that the RMS of kinematic PPP solutions can be improved from 21.6, 16.6 and 37.7 mm to 12.2, 13.3 and 34.3 mm for the fixed solutions in the east, north and vertical components, respectively. Both static and kinematic experiments show that wide-lane and narrow-lane UFO products of all satellites can be generated and provided in a routine way accompanying satellite orbit and clock products for the PPP user anywhere around the world, to obtain accurate and reliable ambiguity-fixed PPP solutions.  相似文献   

13.
Precise satellite orbit and clocks are essential for providing high accuracy real-time PPP (Precise Point Positioning) service. However, by treating the predicted orbits as fixed, the orbital errors may be partially assimilated by the estimated satellite clock and hence impact the positioning solutions. This paper presents the impact analysis of errors in radial and tangential orbital components on the estimation of satellite clocks and PPP through theoretical study and experimental evaluation. The relationship between the compensation of the orbital errors by the satellite clocks and the satellite-station geometry is discussed in details. Based on the satellite clocks estimated with regional station networks of different sizes (∼100, ∼300, ∼500 and ∼700 km in radius), results indicated that the orbital errors compensated by the satellite clock estimates reduce as the size of the network increases. An interesting regional PPP mode based on the broadcast ephemeris and the corresponding estimated satellite clocks is proposed and evaluated through the numerical study. The impact of orbital errors in the broadcast ephemeris has shown to be negligible for PPP users in a regional network of a radius of ∼300 km, with positioning RMS of about 1.4, 1.4 and 3.7 cm for east, north and up component in the post-mission kinematic mode, comparable with 1.3, 1.3 and 3.6 cm using the precise orbits and the corresponding estimated clocks. Compared with the DGPS and RTK positioning, only the estimated satellite clocks are needed to be disseminated to PPP users for this approach. It can significantly alleviate the communication burdens and therefore can be beneficial to the real time applications.  相似文献   

14.
Due to the limited number and uneven distribution globally of Beidou Satellite System (BDS) stations, the contributions of BDS to global ionosphere modeling is still not significant. In order to give a more realistic evaluation of the ability for BDS in ionosphere monitoring and multi-GNSS contributions to the performance of Differential Code Biases (DCBs) determination and ionosphere modeling, we select 22 stations from Crustal Movement Observation Network of China (CMONOC) to assess the result of regional ionospheric model and DCBs estimates over China where the visible satellites and monitoring stations for BDS are comparable to those of GPS/GLONASS. Note that all the 22 stations can track the dual- and triple-frequency GPS, GLONASS, and BDS observations. In this study, seven solutions, i.e., GPS-only (G), GLONASS-only (R), BDS-only (C), GPS + BDS (GC), GPS + GLONASS (GR), GLONASS + BDS (RC), GPS + GLONASS + BDS (GRC), are used to test the regional ionosphere modeling over the experimental area. Moreover, the performances of them using single-frequency precise point positioning (SF-PPP) method are presented. The experimental results indicate that BDS has the same ionospheric monitoring capability as GPS and GLONASS. Meanwhile, multi-GNSS observations can significantly improve the accuracy of the regional ionospheric models compared with that of GPS-only or GLONASS-only or BDS-only, especially over the edge of the tested region which the accuracy of the model is improved by reducing the RMS of the maximum differences from 5–15 to 2–3 TECu. For satellite DCBs estimates of different systems, the accuracy of them can be improved significantly after combining different system observations, which is improved by reducing the STD of GPS satellite DCB from 0.243 to 0.213, 0.172, and 0.165 ns after adding R, C, and RC observations respectively, with an increment of about 12.3%, 29.4%, and 32.2%. The STD of GLONASS satellite DCB improved from 0.353 to 0.304, 0.271, and 0.243 ns after adding G, C, and GC observations, respectively. The STD of BDS satellite DCB reduced from 0.265 to 0.237, 0.237 and 0.229 ns with the addition of G, R and GR systems respectively, and increased by 10.6%, 10.4%, and 13.6%. From the experimental positioning result, it can be seen that the regional ionospheric models with multi-GNSS observations are better than that with a single satellite system model.  相似文献   

15.
Integer ambiguity resolution in Precise Point Positioning (PPP) can improve positioning accuracy and reduce convergence time. The decoupled clock model proposed by Collins (2008) has been used to facilitate integer ambiguity resolution in PPP, and research has been conducted to assess the model’s potential to improve positioning accuracy and reduce positioning convergence time. In particular, the biggest benefits have been identified for the positioning solutions within short observation periods such as one hour. However, there is little work reported about the model’s potential to improve the estimation of the tropospheric parameter within short observation periods. This paper investigates the effect of PPP ambiguity resolution on the accuracy of the tropospheric estimates within one hour.  相似文献   

16.
Intra-system biases (ISBs) between BDS-2 and BDS-3 are of critical importance when combining observations from the BDS-2 and BDS-3 systems, which is meaningful to fully take advantage of the BDS positioning capability. Meanwhile, ISBs should also be considered in the estimation of BDS uncalibrated phase delays (UPDs). In this research, we present a BDS-2/BDS-3 joint-processing scheme, as well as a method for estimating BDS UPDs. The characteristics of ISBs and the quality of BDS UPDs are analyzed based on 30-day data from 130 multi-GNSS experimental (MGEX) stations. Our results indicate that the ISBs are related to the type and version of the receiver. The ISBs can be regarded as constant across the course of a given day, and the mean standard deviation (STD) values of ISBs over one month for different types of receivers are generally within 0.2 m. Moreover, to assess the quality of UPD products, the residuals of the estimated UPDs and the utilization rates of the observation data are computed. The results show that the quality of BDS UPDs can be improved by correcting the satellite-induced pseudo-range variations, and by estimating the wide-lane (WL) UPD difference between BDS-2 and BDS-3. The average RMS values of the estimated residuals of WL UPD and narrow-lane (NL) UPD are 0.07 and 0.09 cycles, respectively; moreover, the utilization rate of the observation data of WL UPD and NL UPD can reach above 90 %. The performance of BDS precise point positioning (PPP) and PPP ambiguity resolution (PPP-AR) is analyzed in terms of positioning accuracy and convergence performance in both the static and kinematic modes. Compared with PPP ambiguity-float solutions, the positioning accuracy of PPP-AR is significantly improved, especially in the east direction. The impact of ISBs on PPP and PPP-AR is also analyzed, and the results indicate that ISBs can improve the convergence speed of float PPP, but can be disregarded in PPP-AR.  相似文献   

17.
在GPS 单点定位中, 参数解算的收敛时间和收敛稳定性是重要的研究内容之一, 影响收敛时间和收敛稳定性的因素很多, 本文主要就观测资料的不同采样间隔、卫星钟差资料的不同采样间隔、不同的定位精度要求对精密单点定位中参数收敛时间的影响进行了深入的分析探讨, 以中国上海GPS综合应用网中的12个测站资料为例, 分析了采样间隔、定位精度要求与收敛时间的关系, 并对不同采样间隔的收敛时间进行了统计分析, 得出一些初步结论.   相似文献   

18.
The ionosphere is an important part of the atmosphere and it is the largest error source of GNSS positioning for single-frequency users. So establishing a precise ionosphere model is one of the critical steps for satellite navigation and also for ionospheric research.  相似文献   

19.
为了保证北斗系统广域差分服务的平稳过渡,北斗三号系统(BDS-3)通过GEO卫星B1I/B3I信号播发北斗二号协议广域差分改正信息,包括等效钟差改正数与格网点电离层信息。分析了增加BDS-3卫星后,等效钟差改正数和格网点电离层信息的特征,并对BDS-2和BDS-3的用户差分距离误差(UDRE)进行了对比。联合BDS-2和BDS-3实测数据,对BDS-3广域差分服务定位精度进行了评估。分析结果表明:BDS-2卫星广播星历空间信号用户等效距离误差(UERE)约为1 m,经过等效钟差改正数后,用户差分距离误差约为0.3 m;BDS-3卫星广播星历空间信号用户等效距离误差约为0.4 m,经过等效钟差改正数后,用户差分距离误差约为0.2 m。等效钟差改正数可以修正广播电文更新带来的空间信号阶跃误差,显著提升卫星空间信号精度。与基本导航系统播发的Klobuchar 8模型,广域差分系统所播发的格网点电离层信息可将电离层误差修正精度提高约18%。与单独BDS-2卫星相比,BDS-2/BDS-3卫星联合条件下,基本导航的单频用户和双频用户定位精度可分别提升26%和41%;广域差分服务的单频用户定位精度为2.4 m,双频用户定位精度为1.7 m,单频用户和双频用户定位精度分别提升13%和41%。   相似文献   

20.
WAAS系统中电离层折射校正的新方法及计算结果   总被引:2,自引:0,他引:2  
黄智  袁洪 《空间科学学报》2008,28(2):132-136
电离层介质的色散性是影响电磁波信号进行卫星导航定位精度的重要因素之一.配合北斗二代分系绩研制任务,提出了一种新的电离层折射校正算法,并利用2000年7月1日到3日的双频GPS观测数据对6个用户站进行试算,进一步将试算所得均方根误差和电离层网格算法得到的误差进行比较.结果表明,对于中纬区域的用户站,估算的TEC误差约为0.5 m左右;而低纬用户误差相对增大,为1 m左右.文中给出的算法与电离层网格模型所提供的精度相差不多,在未来中国自主的卫星增强系统中采用新方法进行电离层进行修正是可行的及有效的.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号