首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A continuous monitoring of coastal sea level changes is important for human society since it is predicted that up to 332 million people in coastal and low-lying areas will be directly affected by flooding from sea level rise by the end of the 21st century. The traditional way to observe sea level is using tide gauges that give measurements relative to the Earth’s crust. However, in order to improve the understanding of the sea level change processes it is necessary to separate the measurements into land surface height changes and sea surface height changes. These measurements should then be relative to a global reference frame. This can be done with satellite techniques, and thus a GNSS-based tide gauge is proposed. The GNSS-based tide gauge makes use of both GNSS signals that are directly received and GNSS signals that are reflected from the sea surface. An experimental installation at the Onsala Space Observatory (OSO) shows that the reflected GNSS signals have only about 3 dB less signal-to-noise-ratio than the directly received GNSS signals. Furthermore, a comparison of local sea level observations from the GNSS-based tide gauge with two stilling well gauges, located approximately 18 and 33 km away from OSO, gives a pairwise root-mean-square agreement on the order of 4 cm. This indicates that the GNSS-based tide gauge gives valuable results for sea level monitoring.  相似文献   

2.
Scintillated GPS phase observations are traditionally characterized by the phase scintillation index, derived from specialized GPS receivers usually tracking at 50 Hz. Geodetic quality GPS receivers, on the other hand, are normally tracking at frequencies up to 1 Hz. However, availability of continuously operating geodetic receivers both in time and geographical location are superior to scintillation receiver’s coverage in many parts of the world. This motivates scintillation studies using regional and global geodetic GPS networks. Previous studies have shown the usefulness of GPS estimated total electron content variations for detecting ionospheric irregularities. In this paper, collocated geodetic and scintillation receivers are employed to compare proxy indices derived from geodetic receivers with the phase scintillation index during quiet and moderately disturbed ionospheric conditions. Sensitivity of the phase scintillation indices at high latitude stations to geomagnetic activity is discussed. Global mapping of ionospheric disturbances using proxy indices from real-time 1 Hz GPS stations are also presented.  相似文献   

3.
Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.  相似文献   

4.
GPS data dedicated to sea surface observation are usually processed using differential techniques. Unfortunately, the precision of resulting kinematic positions is baseline-length dependent. So, high precision sea surface observations using differential GPS techniques are limited to coasts, lakes, and rivers. Recent improvements in GPS satellite products (orbits, clocks, and phase biases) make phase ambiguity fixing at the zero difference level achievable and opens up the observation of the sea surface without geographical constraints. This paper recalls the concept of the Integer Precise Point Positioning technique and discusses the precision of GPS buoy positioning. A sequential version of the GINS software has been implemented to achieve single epoch GPS positioning. We used 1 Hz data from a two week GPS campaign conducted in the Kerguelen Islands. A GPS buoy has been moored close to a radar gauge and 90 m away from a permanent GPS station. This infrastructure offers the opportunity to compare both kinematic Integer Precise Point Positioning and classical differential GPS positioning techniques to in situ radar gauge data. We found that Precise Point Positioning results are not significantly biased with respect to radar gauge data and that horizontal time series are consistent with differential processing at the sub-centimetre precision level. Nevertheless, standard deviations of height time series with respect to radar gauge data are typically [4–5] cm. The dominant driver for noise at this level is attributed to errors in tropospheric estimates which propagate into position solutions.  相似文献   

5.
The TOPEX/Poseidon, Jason-1 and Jason-2 set of altimeter data now provide a time series of synoptic observations of the ocean that span nearly 17 years from the launch of TOPEX in 1992. The analysis of the altimeter data including the use of altimetry to monitor the global change in mean sea level requires a stable, accurate, and consistent orbit reference over the entire time span. In this paper, we describe the recomputation of a time series of orbits that rely on a consistent set of reference frames and geophysical models. The recomputed orbits adhere to the IERS 2003 standards for ocean and earth tides, use updates to the ITRF2005 reference frame for both the SLR and DORIS stations, apply GRACE-derived models for modeling of the static and time-variable gravity, implement the University College London (UCL) radiation pressure model for Jason-1, use improved troposphere modeling for the DORIS data, and apply the GOT4.7 ocean tide model for both dynamical ocean tide modeling and for ocean loading. The new TOPEX orbits have a mean SLR fit of 1.79 cm compared to 2.21 cm for the MGDR-B orbits. These new TOPEX orbits agree radially with independent SLR/crossover orbits at 0.70 cm RMS, and the orbit accuracy is estimated at 1.5–2.0 cm RMS over the entire TOPEX time series. The recomputed Jason-1 orbits agree radially with the Jason-1 GDR-C orbits at 1.08 cm RMS. The GSFC SLR/DORIS dynamic and reduced-dynamic orbits for Jason-2 agree radially with independent orbits from the CNES and JPL at 0.70–1.06 cm RMS. Applying these new orbits, and using the latest altimeter corrections for TOPEX, Jason-1, and Jason-2 from September 1992 to May 2009, we find a global rate in mean sea level of 3.0 ± 0.4 mm/yr.  相似文献   

6.
The main objective of this paper is to integrate Non-Tidal Sea Level (NSL) from the joint TOPEX, Jason-1 and Jason-2 satellite altimetry with tide gauge data at the west and north coast of the United Kingdom for coastal sea level prediction. The temporal correlation coefficient between altimetric NSLs and tide gauge data reaches a maximum higher than 90% for each gauge. The results show that the multivariate regression approach can efficiently integrate the two types of data in the coastal waters of the area. The Multivariate Regression Model is established by integrating the along-track NSL from the joint TOPEX/Jason-1/Jason-2 altimeters with that from eleven tide gauges. The model results give a maximum hindcast skill of 0.95, which means maximum 95% of NSL variance can be explained by the model. The minimum Root Mean Square Error (RMSe) between altimetric observations and model predictions is 4.99 cm in the area. The validation of the model using Envisat satellite altimetric data gives a maximum temporal correlation coefficient of 0.96 and a minimum RMSe of 4.39 cm between altimetric observations and model predictions, respectively. The model is furthermore used to predict high frequency NSL variation (i.e., every 15 min) during a storm surge event at an independent tide gauge station at the Northeast of the UK (Aberdeen).  相似文献   

7.
Geodetic time and frequency transfer (TFT) consists in a comprehensive modeling of code and carrier phase observations from Global Navigation Satellite System (GNSS) in order to determine the synchronization errors between two remote clocks connected to GNSS receivers. Using either common view (CV), or Precise Point Positioning (PPP), current GNSS time transfer uses only GPS measurements. This study combines GPS and GLONASS observations in geodetic TFT in order to determine the added value of the GLONASS data in the results. Using the software Atomium, we demonstrate on one hand that using both constellations improves the solution for both CV and PPP results when analysing short data batches. In that case, there are not enough GPS code data to calibrate the solution, and additional GLONASS code data allows us to retrieve a correct absolute value for the solution. On the other hand, the CV results of frequency transfer are not significantly affected by adding GLONASS data, while in PPP the combination with GLONASS modifies the frequency transfer results, and in particular the daily frequency offset, with maximum differences of 150 ps between the TFT solutions obtained with GPS-only or GPS + GLONASS.  相似文献   

8.
Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are a necessity. With the launch of the TOPEX/Poseidon mission in 1992 a still on-going time series of high-accuracy altimetry measurements of ocean topography started, continued by the altimetry missions Jason-1 in 2001 and Jason-2/OSTM in 2008. This paper contributes to the on-going orbit reprocessing carried out by several groups and presents the efforts of the Navigation Support Office at ESA/ESOC using its NAPEOS software for the generation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. Data of all three tracking instruments on-board the satellites (beside the altimeter), i.e. GPS, DORIS, and SLR measurements, were used in a combined data analysis. About 7 years of Jason-1 data and more than 1 year of Jason-2 data were processed. Our processing strategy is close to the GDR-C standards. However, we estimated slightly different scaling factors for the solar radiation pressure model of 0.96 and 0.98 for Jason-1 and Jason-2, respectively. We used 30 s sampled GPS data and introduced 30 s satellite clocks stemming from ESOC’s reprocessing of the combined GPS/GLONASS IGS solution. We present the orbit determination results, focusing on the benefits of adding GPS data to the solution. The fully combined solution was found to give the best orbit results. We reach a post-fit RMS of the GPS phase observation residuals of 6 mm for Jason-1 and 7 mm for Jason-2. The DORIS post-fit residuals clearly benefit from using GPS data in addition, as the DORIS data editing improves. The DORIS observation RMS for the fully combined solution is with 3.5 mm and 3.4 mm, respectively, 0.3 mm better than for the DORIS-SLR solution. Our orbit solution agrees well with external solutions from other analysis centers, as CNES, LCA, and JPL. The orbit differences between our fully combined orbits and the CNES GDR-C orbits are of about 0.8 cm for Jason-1 and at 0.9 cm for Jason-2 in the radial direction. In the cross-track component we observe a clear improvement when adding GPS data to the POD process. The 3D-RMS of the orbit differences reveals a good orbit consistency at 2.7 cm and 2.9 cm for Jason-1 and Jason-2. Our resulting orbit series for both Jason satellites refer to the ITRF2005 reference frame and are provided in sp3 file format on our ftp server.  相似文献   

9.
Due to its specific geographical location as well as its geodetic equipment (DORIS, GNSS, microwave transponder and tide gauges), the Gavdos station in Crete, Greece is one of the very few sites around the world used for satellite altimetry calibration. To investigate the quality of the Gavdos geodetic coordinates and velocities, we analyzed and compared here DORIS and GPS-derived results obtained during several years of observations. The DORIS solution is the latest ignwd11 solution at IGN, expressed in ITRF2008, while the GPS solution was obtained using the GAMIT software package. Current results show that 1–2 mm/yr agreement can be obtained for 3-D velocity, showing a good agreement with current geophysical models. In particular, the agreement obtained for the vertical velocity is around 0.3–0.4 mm/yr, depending on the terrestrial reference frame. As a by-product of these geodetic GPS and DORIS results, Zenith Tropospheric Delays (ZTDs) estimations were also compared in 2010 between these two techniques, and compared to ECMWF values, showing a 6.6 mm agreement in dispersion without any significant difference between GPS and DORIS (with a 97.6% correlation), but with a 13–14 mm agreement in dispersion when comparing to ECMWF model (with only about 90% correlation for both techniques). These tropospheric delay estimations could also provide an external calibration of the tropospheric correction used for the geophysical data of satellite altimetry missions.  相似文献   

10.
This paper presents an improved new method with differential evolution and the cubic spline approach is proposed to retrieve sea level height based on GNSS SNR observations from a single geodetic receiver. Considering the B-spline function is unstable at the beginning or end, and the feature that B-spline functions do not pass through nodes may introduce errors. Thus, the cubic spline is applied to the retrieval process and accounts for a continuous and smooth in sea level retrieval time series. Besides, the biases caused by tropospheric delay and dynamic sea level are considered and corrected. Testing data from two stations with different tidal range and the final solution agrees well with measurements from co-located tide gauges, reaching the RMSE of 3.67 cm at Friday Harbor, Washington, and 1.36 cm at Onsala, Sweden. Comparison of the nonlinear least squares, this method leads to a clear increase in precision of the sea level retrievals within 50%. Additionally, referring to the result of Purnell et al. (2020) and the IAG inter-comparison campaign, the results of this paper show more potential.  相似文献   

11.
DORIS is one of the four space-geodetic techniques participating in the Global Geodetic Observing System (GGOS), particularly to maintain and disseminate the Terrestrial Reference Frame as determined by International Earth rotation and Reference frame Service (IERS). A few years ago, under the umbrella of the International Association of Geodesy, a DORIS International Service (IDS) was created in order to foster international cooperation and to provide new scientific products. This paper addresses the organizational aspects of the IDS and presents some recent DORIS scientific results. It is for the first time that, in preparation of the ITRF2008, seven Analysis Centers (AC’s) contributed to derive long-term time series of DORIS stations positions. These solutions were then combined into a homogeneous time series IDS-2 for which a precision of less than 10 mm was obtained. Orbit comparisons between the various AC’s showed an excellent agreement in the radial component, both for the SPOT satellites (e.g. 0.5–2.1 cm RMS for SPOT-2) and Envisat (0.9–2.1 cm RMS), using different software packages, models, corrections and analysis strategies. There is now a wide international participation within IDS that should lead to future improvements in DORIS analysis strategies and DORIS-derived geodetic products.  相似文献   

12.
The Global Navigation Satellite System (GNSS) receivers equipped on the Haiyang-2D (HY-2D) satellite is capable of tracking the signals of both the third generation of BeiDou satellite navigation System (BDS-3) and the Global Positioning System (GPS), which make it feasible to assess the performance of real-time orbit determination (RTOD) for the HY-2D using onboard GNSS observations. In this study, the achievable accuracy and convergence time of RTOD for the HY-2D using onboard BDS-3 and GPS observations are analyzed. Benefiting from the binary-offset-carrier (BOC) modulation, the BDS-3 C1X signal includes less noise than the GPS C1C signal, which has the same signal frequency and chipping rate. The root mean squares (RMS) of the noises of C1X and C1C code measurements are 0.579 m and 1.636 m, respectively. Thanks to a ten-times higher chipping rate, the code measurements of BDS-3 C5P, GPS C1W and C2W are less noisy. The RMS of code noises of BDS-3 C5P, GPS C1W, and C2W are 0.044 m, 0.386 m, and 0.272 m, respectively. For the HY-2D orbit, the three-dimensional (3D) and radial accuracies can reach 31.8 cm and 7.5 cm with only BDS-3 observations, around 50 % better than the corresponding accuracies with GPS. Better performance of the BDS-3 in RTOD for the HY-2D is attributed to the high quality of its broadcast ephemeris. When random parameters are used to absorb ephemeris errors, substantial improvement is seen in the accuracy of HY-2D orbit with either BDS-3 or GPS. The 3D RMS of HY-2D orbit errors with BDS-3 and GPS are enhanced to 23.1 cm and 33.6 cm, and the RMS of the radial components are improved to 6.1 cm and 13.3 cm, respectively. The convergence time is 41.6 and 75.5 min for the RTOD with BDS-3 and GPS, while it is reduced to 39.2 and 27.4 min after the broadcast ephemeris errors are absorbed by random parameters. Overall, the achievable accuracy of RTOD with BDS-3 reaches decimeter level, which is even better than that with GPS, making real-time navigation using onboard BDS-3 observations a feasible choice for future remote sensing missions.  相似文献   

13.
Sea level changes are threatening the human living environments, particularly along the European Coasts with highly dense population. In this paper, coastal sea level changes in western and southern Europe are investigated for the period 1993–2011 using Global Positioning System (GPS), Tide Gauge (TG), Satellite Altimetry (SA), Gravity Recovery and Climate Experiment (GRACE) and geophysical models. The mean secular trend is 2.26 ± 0.52 mm/y from satellite altimetry, 2.43 ± 0.61 mm/y from TG+GPS and 1.99 ± 0.67 mm/y from GRACE mass plus steric components, which have a remarkably good agreement. For the seasonal variations, annual amplitudes of satellite altimetry and TG+GPS results are almost similar, while GRACE Mass+Steric results are a little smaller. The annual phases agree remarkably well for three independent techniques. The annual cycle is mainly driven by the steric contributions, while the annual phases of non-steric (mass component) sea level changes are almost a half year later than the steric sea level changes.  相似文献   

14.
Global sea level rise due to an increasingly warmer climate has begun to induce hazards, adversely affecting the lives and properties of people residing in low-lying coastal regions and islands. Therefore, it is important to monitor and understand variations in coastal sea level covering offshore regions. Signal-to-noise ratio (SNR) data of Global Navigation Satellite System (GNSS) have been successfully used to robustly derive sea level heights (SLHs). In Taiwan, there are a number of continuously operating GNSS stations, not originally installed for sea level monitoring. They were established in harbors or near coastal regions for monitoring land motion. This study utilizes existing SNR data from three GNSS stations (Kaohsiung, Suao, and TaiCOAST) in Taiwan to compute SLHs with two methods, namely, Lomb–Scargle Periodogram (LSP)-only, and LSP aided with tidal harmonic analysis developed in this study. The results of both methods are compared with co-located or nearby tide gauge records. Due to the poor quality of SNR data, the worst accuracy of SLHs derived from traditional LSP-only method exceeds 1?m at the TaiCOAST station. With our procedure, the standard deviations (STDs) of difference between GNSS-derived SLHs and tide gauge records in Kaohsiung and Suao stations decreased to 10?cm and the results show excellent agreement with tide gauge derived relative sea level records, with STD of differences of 7?cm and correlation coefficient of 0.96. In addition, the absolute GNSS-R sea level trend in Kaohsiung during 2006–2011 agrees well with that derived from satellite altimetry. We conclude that the coastal GNSS stations in Taiwan have the potential of monitoring absolute coastal sea level change accurately when our proposed methodology is used.  相似文献   

15.
The in situ validation of the satellite altimeter sea surface heights is generally performed either at a few local points directly flown over by the satellites or using the global tide gauge network. A regional in situ calibration method was developed by NOVELTIS in order to monitor the altimeter data quality in a perimeter of several hundred kilometres around a given in situ calibration site. The primary advantage of this technique is its applicability not only for missions flying over dedicated sites but also for missions on interleaved or non repetitive orbits. This article presents the altimeter bias estimates obtained with this method at the Corsican calibration site, for the Jason-1 mission on its nominal and interleaved orbits as well as for the Jason-2 and Envisat missions. The various regional bias estimates (8.2 cm and 7.4 cm for Jason-1 respectively on the nominal and interleaved orbits in Senetosa, 16.4 cm for Jason-2 in Senetosa and 47.0 cm for Envisat in Ajaccio, with an accuracy between 2.5 cm and 4 cm depending on the mission) are compared with the results obtained by the other in situ calibration teams. This comparison demonstrates the coherency at the centimetre level, the stability and the generic character of the method, which would also be of benefit to the new and future altimeter missions such as Cryosat-2, SARAL/AltiKa, Sentinel-3, Jason-3, Jason-CS.  相似文献   

16.
The differences between coastal altimetry and sea level time series of tide gauges in between March 1993 and December 2009 are used to estimate the rates of vertical land motion at three tide gauge locations along the southwestern coasts of Turkey. The CTOH/LEGOS along-track coastal altimetry retrieves altimetric sea level anomalies closer to the coast than the standard along-track altimetry products. However, the use of altimetry very close to the coast is not found to improve the results. On the contrary, the gridded and interpolated AVISO merged product exhibits the best agreement with tide gauge data as it provides the smoothest variability both in space and time compared with along track altimetry data. The Antalya gauge to the south (in the Mediterranean Sea) and the Mentes/Izmir gauge to the west (in the Aegean Sea) both show subsidence while the Bodrum tide gauge to the south (in the Aegean Sea) shows no significant vertical land motion. The results are compared and assessed with three independent geophysical vertical land motion estimates like from GPS. The GIA effect in the region is negligible. The VLM estimates from altimetry and tide gauge data are in good agreement both with GPS derived vertical velocity estimates and those inferred from geological and archaeological investigations.  相似文献   

17.
In recent years Global Navigation Satellite System’s signals Reflectometry (GNSS-R) has stood as a potential powerful remote sensing technique to derive scientifically relevant geophysical parameters such as ocean altimetry, sea state or soil moisture. This has brought out the need of designing and implementing appropriate receivers in order to track and process this kind of signals in real-time to avoid the storage of huge volumes of raw data. This paper presents the architecture and performance of the Global Positioning System (GPS) Reflectometer Instrument for PAU (griPAU), a real-time high resolution Delay-Doppler Map reflectometer, operating at the GPS L1 frequency with the C/A codes. The griPAU instrument computes 24 × 32 complex points DDMs with configurable resolution (ΔfDmin = 20 Hz, Δτmin = 0.05 chips) and selectable coherent (minimum = 1 ms, maximum = 100 ms for correlation loss Δρ < 90%) and incoherent integration times (minimum of one coherent integration period and maximum not limited but typically <1 s). A high sensitivity (DDM peak relative error = 0.9% and DDM volume relative error = 0.03% @ Ti = 1 s) and stability (Δρt = −1 s−1) have been achieved by means of advanced digital design techniques.  相似文献   

18.
The devastating Sumatra tsunami in 2004 demonstrated the need for a tsunami early warning system in the Indian Ocean. Such a system has been installed within the German-Indonesian Tsunami Early Warning System (GITEWS) project. Tsunamis are a global phenomenon and for global observations satellites are predestined. Within the GITEWS project a feasibility study on a future tsunami detection system from space has therefore been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative way of using GNSS signals for remote sensing. It uses ocean reflected GNSS signals for sea surface altimetry. With a dedicated Low Earth Orbit (LEO) constellation of satellites equipped with GNSS-R receivers, densely spaced sea surface height measurements could be established to detect tsunamis. Some general considerations on the geometry between LEO and GNSS are made in this simulation study. It exemplary analyzes the detection performance of a GNSS-R constellation at 900 km altitude and 60° inclination angle when applied to the Sumatra tsunami as it occurred in 2004. GPS is assumed as signal source and the combination with GLONASS and Galileo signals is investigated. It can be demonstrated, that the combination of GPS and Galileo is advantageous for constellations with few satellites while the combination with GLONASS is preferable for constellations with many satellites. If all three GNSS are combined, the best detection performance can be expected for all scenarios considered. In this case an 18 satellite constellation will detect the Sumatra tsunami within 17 min with certainty, while it takes 53 min if only GPS is considered.  相似文献   

19.
We are developing fast photon-counter instruments to study the rapid variability of astrophysical sources by time tagging photon arrival times with unprecedented accuracy, making use of a Rubidium clock and GPS receiver. The first realization of such optical photon-counters, dubbed AquEYE (the Asiago Quantum Eye), was mounted in 2008 at the 182 cm Copernicus Observatory in Asiago. AquEYE observed the Crab pulsar several times and collected data of extraordinary quality that allowed us to perform accurate optical timing of the Crab pulsar and to study the pulse shape stability on a timescale from days to years with an excellent definition. Our results reinforce the evidence for decadal stability of the inclination angle between the spin and magnetic axis of the Crab pulsar. Future realizations of our instrument will make use of the Galileo Global Navigation Satellite System (GNSS) time signal.  相似文献   

20.
We performed an initial analysis of the pseudorange data of the GIOVE-B satellite, one of the two experimental Galileo satellites currently in operation, for time transfer.1 For this specific aim, software was developed to process the GIOVE-B raw pseudoranges and broadcast navigation messages collected by the Galileo Experimental Sensor Stations (GESS) tracking network, yielding station clock phase errors with respect to the Experimental Galileo System Time (EGST). The software also allows processing the Global Positioning System (GPS) P1 and P2 pseudorange data with broadcast navigation message collected at the same stations to obtain the station clock phase errors with respect to the GPS system time (GPST). Differencing these solutions between stations provides two independent means of GNSS time transfer. We compared these time transfer results with Precise Point Positioning (PPP) method applied to GPS data in combined carrier-phase and pseudorange mode as well as in pseudorange-only mode to show their relative merits. The PPP solutions in combined carrier-phase and pseudorange mode showed the least instability of the methods tested herein at all scales, at few parts in 1015 at 1 day for the stations processed, following a tau−½ interval dependency. Conversely, the PPP solutions in pseudorange-only mode are an order of magnitude worst (few parts in 1014 at 1 day for the stations processed) following a tau−1 power-law, but slightly better than the single-satellite raw GPS time transfer solutions obtained using the developed software, since the PPP least-squares solution effectively averages the pseudorange noise. The pseudorange noise levels estimated from PPP pseudorange residuals and from clock solution comparisons are largely consistent, providing a validation of our software operation. The raw GIOVE-B time transfer, as implemented in this work, proves to be slightly better than single-satellite raw GPS satellite time transfer, at least in the medium term. However, one of the processed stations shows a combined GPS P1 and P2 pseudorange noise level at 2 m, a factor 2 worst than usually seen for geodetic receivers, so the GPS time transfer results may not be at their best for the cases processed. Over the short term, the GPS single-satellite time transfer instability outperforms the GIOVE-B by an order of magnitude at 1 s interval, which would be due to the different characteristics of the tracking loop filters for GPS P1 and P2 on one hand and the GIOVE-B signals on the other. Even at this preliminary stage and using an experimental satellite system, results show that the GIOVE-B (and hence Galileo) signals offer interesting perspectives for high precision time transfer between metrological laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号