首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

2.
The diurnal variation of the mid-latitude upper thermosphere zonal winds during equinoxes has been studied using data recently generated from CHAMP measurements from 2002 to 2004 using an iterative algorithm. The wind data was separated into two geomagnetic activity levels, representing high geomagnetic activity level (Ap > 8) and low geomagnetic activity level (Ap ? 8). The data were further separated into two solar flux levels; with F10.7 > 140 for high and F10.7 ? 140 for low. Geomagnetic activity is a correlator just as significant as solar activity. The response of mid-latitude thermospheric zonal winds to increases in geomagnetic disturbances and solar flux is evident. With increase in geomagnetic activity, midday to midnight winds are generally less eastward and generally more westward after the about midnight transitions. The results show that east west transitions generally occurred about midnight hours for all the situations analyzed. The west to east transition occurs from 1400–1500 MLT. Enhanced westward averaged zonal wind speeds going above 150 ms−1 are observed in the north hemisphere mid-latitude about sunrise hours (∼0700–1100 MLT). Nighttime winds in the north hemisphere are in good agreement with previous single station ground observations over Millstone Hill. Improved ground observations and multi satellite observations from space will greatly improve temporal coverage of the Earth’s thermosphere.  相似文献   

3.
An analysis of properties and peculiarities of the nighttime winter foF2 increases (NWI) in the East Siberia is made on data of ionospheric station Irkutsk in the periods 1958–1992 and 2002–2009 and the empirical model of the F2 layer critical frequency under the geomagnetic quiet conditions deduced from these data (model Q-F2). It is revealed, that the NWI is the stable regularity of the quiet ionosphere over Irkutsk. The amplitude of the NWI (the difference between maximum and minimum foF2 values at night hours) is the greatest in December–January and nearly the same at low and middle solar activity. It is a peculiarity of the quiet ionosphere in the East Siberia. Maximum in night foF2 under quiet geomagnetic conditions is observed mainly after midnight (02-04 LT) and is shifted to predawn hours as solar activity increases. At low solar activity the quiet ionosphere at ∼02–04 LT shows the following properties: (a) the fluctuations of foF2 and hmF2 are in the reverse correlation but this dependence is weak; (b) very strong fluctuations of foF2 (|δfoF2| > 30%) occur seldom (∼4% of events) and almost all of them are positive; an example of very strong fluctuations of foF2 up to 60% can be an extreme increase in the foF2 on 19.12.2008; (c) the very strong enhancements of foF2 in the NWI maximum can be observed at the low geomagnetic activity, they occur more often during substorms but very seldom during geomagnetic storms. Possible reasons of these properties of NWI are discussed.  相似文献   

4.
Solar dependence of electron and ion temperatures (Te and Ti) in the ionosphere is studied using RPA data onboard SROSS C2 at an altitude of ∼500 km and 77°E longitude during early morning hours (04:00–07:00 LT) for three solar activities: solar minimum, moderate and maximum during winter, summer and equinox months in 10°S–20°N geomagnetic latitude. In winter the morning overshoot phenomenon is observed around 06:00 LT (Te enhances to ∼4000 K) during low-solar activity and to Te ∼ 3800 K, during higher solar activity. In summer, it is observed around 05:30 LT, but the rate of Te enhancement is higher during moderate solar activity (∼2700 K/hr) than the low-solar activity (∼1700 K/hr). During equinox, this phenomenon is delayed and is observed around 06:00 LT (∼4200 K) during all three activities.  相似文献   

5.
The amplitude scintillations data recorded at 244 MHz from the geostationary satellite, FLEETSAT (73°E) at a low latitude station, Waltair (17.7°N, 83.3°E) during the ten year period of high to low solar activity from 2001 to 2010 is considered to study the occurrence characteristics of the VHF scintillations. A close association between the intense scintillations on VHF signals during pre-midnight hours, associated with range type of spread-F on ionograms and a relatively weak and slow fading scintillations during post-midnight hours associated with frequency type of spread-F is observed during the relatively high sunspot years from 2001 to 2004, whereas during the low sunspot years from 2005 to 2010 the scintillation activity as well as spread-F activity are found to be minimum. During both the high and low sunspot years, it is observed that the maximum scintillation activity occurs during equinoctial months followed by winter with the minimum occurrence during summer months. The annual mean percentage occurrence of scintillations is found to be clearly associated with the variations in the annual mean sunspot number. The nocturnal variations in the occurrence of scintillations show the onset of scintillation activity starts from 19:00 h LT with maximum of occurrence around 21:00 h LT. A clear semiannual variation in the occurrence of scintillations is observed during pre-midnight hours with two peaks in equinoctial months of March/April and September/October. The number of scintillation patches observed is found to be more during pre-midnight hours compared to those during post-midnight hours. The most probable scintillation patch duration lies around 30 min. Further, it is also found that the number of scintillation patches with durations of 60 min and more decreases with the increase in the patch duration. It is also observed in general that the scintillation activity is inhibited during geomagnetic disturbed days.  相似文献   

6.
The occurrence rate of SAR arcs during 1997–2007 has been analyzed based on the photometric observations at the Yakutsk meridian (Maimaga station, corrected geomagnetic coordinates: 57°N, 200°E). SAR arcs appeared in 114 cases (∼500 h) during ∼370 nights of observations (∼3170 h). The occurrence frequency of SAR arcs increases to 27% during the growth phase of solar activity and has a clearly defined maximum at a decline of cycle 23. The SAR arc registration probability corresponds to the variations in geomagnetic activity in this solar cycle. The dates, intervals of UT, and geomagnetic latitudes of SAR arc observations at the Yakutsk meridian are presented.  相似文献   

7.
The aim of the study is to explore whether age at death from cardiovascular diseases depends on solar and geomagnetic activities. The data were collected for 1970–1978 in Novosibirsk, West Siberia, for industrial workers of Siberian origin. The Spearman correlations are computed between linearly detrended lifespan and daily or monthly physical variables to establish immediate (lag, L = 0), delayed (L = 1–3 days) and cumulative (L = ±30 days) influences. Significant correlations ranging from r = −0.26 to r = −0.30 for L from 0 to 3, respectively, are found for men between solar radio flux at wavelength 10.7 cm and age at death from acute myocardial infarction (AMI) but not from acute heart failure, ischemic heart disease and stroke. For AMI, women’s longevity displays an opposite (direct) association with the average solar character occurred at the calendar month of death. The index of geomagnetic activity, Ap, exhibits inverse association with longevity for the AMI stratum for both sexes. GLM univariate procedure revealed higher contribution of Ap to the variance of lifespan compared to season of death. The individual age at death susceptibility to cosmic influences is found to depend upon solar activity at year of birth. It is concluded that associations between the lifespan for cardiovascular decedents and the indices of solar and geomagnetic activities at time of death and of birth are cause-of-death- and sex-specific.  相似文献   

8.
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionospheric anomaly (EIA) region is studied by analyzing dual-frequency signals of the Global Position System (GPS) acquired from a chain of nine observational sites clustered around Taiwan (21.9–26.2°N, 118.4–112.6°E). In this study, we present results from a statistical study of seasonal and geomagnetic effects on the EIA during solar cycle 23: 1994–2003. It is found that TEC at equatorial anomaly crests yield their maximum values during the vernal and autumnal months and their minimum values during the summer (except 1998). Using monthly averaged Ic (magnitude of TEC at the northern anomaly crest), semi-annual variations is seen clearly with two maxima occurring in both spring and autumn. In addition, Ic is found to be greater in winter than in summer. Statistically monthly values of Ic were poorly correlated with the monthly Dst index (r = −0.22) but were well correlated with the solar emission F10.7 index (r = 0.87) for the entire database for the period during 1994–2003. In contrast, monthly values of Ic were correlated better with Dst (r ? 0.72) than with F10.7 (r ? 0.56) in every year during the low solar activity period (1994–1997). It suggests that the effect of solar activity on Ic is a longer term (years), whereas the effect of geomagnetic activity on Ic is a shorter term (months).  相似文献   

9.
The periodic variation of TEC data at Xiamen station (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) at crest of equatorial anomaly in China from 1997 to 2004 is analyzed. The characteristic of TEC association with solar activity and geomagnetic activity are also analyzed. The method of continuous wavelet, cross wavelet and wavelet coherence transform methods have been used. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Several remarkable components including 128–256 days, 256–512 days and 512–1024 days exist in TEC variations. The TEC data at Xiamen station is in anti-phase with geomagnetic Dst index in semiannual time-scale, but this response only exists during high solar activity. Diurnal variation of TEC is studied for different seasons. Some features like the semiannual anomaly and winter anomaly in TEC have been reported.  相似文献   

10.
The paper presents an empirical model of the total electron content (TEC) response to the geomagnetic activity described by the Kp-index. The model is built on the basis of TEC measurements covering the region of North America (50°W–150°W, 10°N–60°N) for the period of time between October 2004 and December 2009. By using a 2D (latitude-time) cross-correlation analysis it is found that the ionospheric response to the geomagnetic activity over the considered geographic region and at low solar activity revealed both positive and negative phases of response. The both phases of the ionospheric response have different duration and time delay with respect to the geomagnetic storm. It was found that these two parameters of the ionospheric response depend on the season and geographical latitude. The presence of two phases, positive and negative, of the ionospheric response imposed the implementation of two different time delay constants in order to properly describe the two different delayed reactions. The seasonal dependence of the TEC response to geomagnetic storms is characterized by predominantly positive response in winter with a short (usually ∼5–6 h) time delay as well as mainly negative response in summer with a long (larger than 15 h) time delay. While the TEC response in March and October is more close to the winter one the response in April and September is similar to the summer one.  相似文献   

11.
Total electron content (TEC) derived from ionosonde data recorded at the station of Korhogo (Lat = 9.33°N, Long = 5.43°W, Dip = 0.67°S) are compared to the International Reference Ionosphere (IRI) model predicted TEC for high (1999) and low (1994) solar activity conditions. The results show that the model represents the diurnal variation of the TEC as well as a solar activity and seasonal dependence. This variation is closer to that of the ionosonde-inferred TEC at high solar activity. However, at low solar activity the IRI overestimates the ionosonde-inferred TEC. The relative deviation ΔTEC is more prominent in the equinoctial seasons during nighttime hours where it is as high as 70%. At daytime hours, the relative deviation is estimated to 0–30%.  相似文献   

12.
The present study reports the analysis of GPS based TEC for our station Surat (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region in India at times close to some earthquake events (M ? 5) during the year 2009 in India and its neighbouring regions. The TEC data used in the study are obtained from GPS Ionospheric Scintillation and TEC Monitoring (GISTM) system. The TEC data has been analysed corresponding to 11 earthquakes in low solar activity period and quiet geomagnetic condition. We found that, out of 11 cases of earthquakes (M > 5) there were seven cases in which enhancement in TEC occurred on earthquake day and in other four cases there was depletion in TEC on earthquake day. The variation in refractivity prior to earthquake was significant for the cases in which the epicentre lied within a distance of 600 km from the receiving station. By looking into the features on temporal enhancement and depletion of TEC a prediction was made 3–2 days prior to an earthquake (on 28 October 2009 in Bhuj – India). The paper includes a brief discussion on the method of potentially identifying an impending earthquake from ionospheric data.  相似文献   

13.
Hourly values of the F2-layer peak density, NmF2, measured by 95 ionosondes near noon from 1957 to 2011 at low and middle geomagnetic latitudes of the northern and southern geographic hemispheres are used in a statistical study of the NmF2 equinoctial asymmetry. The ratios, R, of NmF2 measured during 61 days around the March equinox to NmF2 measured during 61 days around the September equinox at the same UT near noon during geomagnetically quiet daytime conditions for approximately the same solar activity conditions over the same ionosonde are analyzed. The conditional probability of the occurrence of R in an interval of R, the most probable value of R, and the mean expected value of R are calculated for the first time for the low, moderate, and high solar activity levels to study variations in these statistical parameters with latitude and solar activity. These statistical parameters are averaged over 5° geomagnetic latitude interval in the northern and southern geographic hemispheres to calculate and to study for the first time trends in latitude and solar activity of these averaged NmF2 equinoctial asymmetry statistical characteristics.  相似文献   

14.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

15.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

16.
First comparison of in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal (geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29°N, 151.12°E)) for the low solar activity year 2005, are presented in this paper. Calculation of the diurnal maximum of the strength of the equatorial electrojet, which can serve as precursor to ionospheric scintillations in the anomaly region is also done. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. Irregularities in electron density distribution cause scintillations on transionospheric links and there exists a close relationship between an irregularity and scintillation. In 40% of the cases, DEMETER detects the irregularity structures (dNe/Ne ? 5% and dNi/Ni (O+) ? 5%) and GPS L band scintillations (S4 ? 0.2) are also observed around the same time, for the low solar activity period. It is found that maximum irregularity intensity is obtained in the geomagnetic latitude range of 10–20° for both electron density and ion density. As the GPS signals pass through this irregularity structure, scintillations are recorded by the GPS receiver installed at the equatorial anomaly station, Bhopal it is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during the descending low solar activity period. The percentage occurrence of density irregularities and scintillations shows good correspondence with diurnal maximum of the strength of electrojet, however this varies with different seasons with maximum correspondence in summer (up to 66%) followed by equinox (up to 50%) and winter (up to 46%). Also, there is a threshold value of EEJ strength to produce density irregularities ((dNe/Ne)max ? 5%) and for moderate to strong scintillations (S4 ? 0.3) to occur. For winter this value is found to be ∼40 nT whereas for equinox and summer it is around 50 nT.  相似文献   

17.
The ionospheric scintillation and TEC (Total Electron Content) variations are studied using GPS (Global Positioning System) measurements at an Indian low latitude station Surat (21.16°N, 72.78°E; Geomagnetic: 12.90°N, 147.35°E), situated near the northern crest of the equatorial anomaly region. The results are presented for data collected during the initial phase of current rising solar activity (low to moderate solar activity) period between January 2009 and December 2011. The results show that within a total number of 656 night-time scintillation events, 340 events are observed with TEC depletions, Rate of change of TEC (ROT) fluctuations and enhancement of Rate of change of TEC Index (ROTI). A comparison of night-time scintillation events from the considered period reveal strong correlation amongst the duration of scintillation activity in S4 index, TEC depletion, ROT fluctuations and ROTI enhancement in the year 2011, followed by the year 2010 and least in 2009. The statistical analyses of scintillation activity with enhancement of ROTI also show that about 70–96% scintillation activity took place in equinox and winter months. Moreover, from a nocturnal variation in occurrence of scintillation with (S4 ? 0.2) and enhancement of ROTI with (ROTI ? 0.5), a general trend of higher occurrence in pre-midnight hours of equinox and winter seasons is observed in both indices during the year 2011 and 2010, while no significant trend is observed in the year 2009. The results suggest the presence of F-region ionospheric irregularities with scale sizes of few kilometers and few hundred meters over Surat and are found to be influenced by solar and magnetic activity.  相似文献   

18.
This study characterizes equatorial scintillations at L-band frequency over Lagos, Nigeria during the minimum and ascending phases of solar cycle 24. Three years (2009–2011) of amplitude scintillation data were used for the investigation. The data were grouped on daily, monthly, seasonal, and yearly scales at three levels of scintillation (weak (0.3 ? S4 < 0.4), moderate (0.4 ? S4 < 0.7), and intense (S4 ? 0.7)). To ensure reliable statistical inferences, three data cut-off criteria were adopted. Scintillations were observed to have a daily trend of occurrence during the hours of 1900–0200 LT, and higher levels of scintillations were localized within the hours of 2000–2300 LT. On monthly basis, September and October recorded the highest occurrences of scintillation, while January recorded the least. Scintillations were recorded during all the months of 2011, except January. Surprisingly, pockets of scintillation events (weak levels) were also observed during the summer months (May, June, and July). Seasonally, equinoxes recorded the highest occurrences of scintillation, while June solstice recorded the least occurrences. Scintillation activity also increases with solar and geomagnetic activity. On a scintillation active day, the number of satellites available to the receiver’s view reduces as the duration of observation reduces. These results may support the development of future models that could provide real-time predictability of African equatorial scintillations, with a view to supporting the implementation of GNSS-based navigation for aviation applications in Africa.  相似文献   

19.
The paper presents results of our study of dependence of geomagnetic activity from geoeffective parameters taking into account mutual orientation of the interplanetary magnetic field, electric field of the solar wind and geomagnetic moment. We attract a reconnection model elaborated by us made allowance for changes of geometry of the solar wind–magnetosphere interaction during annual and diurnal motions of the Earth. We take as our data base the interplanetary magnetic field and solar wind velocity measured at 1 a.u. at ecliptic plane for the period of 1963–2005 and Kp, Dst, am indices. Taken as a whole a geoeffective parameter suggested by us explains 95% of observed variations of the indices. Changes of the geometric factor determined by mutual orientation of the solar wind electric field and geomagnetic moment explain larger than 75% of observed statistical variations of Dst and am indices. Based on our results we suggest a new explanation of semi-annual and UT variation of geomagnetic activity.  相似文献   

20.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号