首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current sheet (CS) creation before a flare in the vicinity of a singular line above the active region NOAA 10365 is shown in numerical experiments. Such a way the possibility of energy accumulation for a solar flare is demonstrated. These data and results of observation confirm the electrodynamical solar flare model that explains solar flares and CME appearance during CS disruption. The model explains also all phenomena observed in flares. For correct reproduction of the real boundary conditions the magnetic flux between spots should be taken into account. The full system of 3D MHD equations are solved using the PERESVET code. For setting the boundary conditions the method of photospheric magnetic maps is used. Such a method permits to take into account all evolution of photospherical magnetic field during several days before the flare.  相似文献   

2.
Emergence of complex magnetic flux in the solar active regions lead to several observational effects such as a change in sunspot area and flux embalance in photospheric magnetograms. The flux emergence also results in twisted magnetic field lines that add to free energy content. The magnetic field configuration of these active regions relax to near potential-field configuration after energy release through solar flares and coronal mass ejections. In this paper, we study the relation of flare productivity of active regions with their evolution of magnetic flux emergence, flux imbalance and free energy content. We use the sunspot area and number for flux emergence study as they contain most of the concentrated magnetic flux in the active region. The magnetic flux imbalance and the free energy are estimated using the HMI/SDO magnetograms and Virial theorem method. We find that the active regions that undergo large changes in sunspot area are most flare productive. The active regions become flary when the free energy content exceeds 50% of the total energy. Although, the flary active regions show magnetic flux imbalance, it is hard to predict flare activity based on this parameter alone.  相似文献   

3.
The photometric-magnetic dynamical model handles the evolution of an individual sunspot as an autonomous nonlinear, though integrable, dynamical system. One of its consequences is the prediction of an upper limit of the sunspot areas. This upper limit is analytically expressed by the model parameters, while its calculated value is verified by the observational data. In addition, an upper limit for the magnetic strength inside the sunspot is also predicted, and then, we obtain the following significant result: The upper limit of the total magnetic flux in an active region is found to be of about 7.23 × 1023 Mx, namely, phenomenologically equal to the magnetic flux concentrated in the totality of the granules of the quiet Sun, having a typical maximum magnetic strength of about 12G. Therefore, the magnetic flux concentrated in an active region cannot exceed the magnetic flux concentrated in the photosphere as a whole.  相似文献   

4.
5.
Magnetic clouds are the interplanetary manifestation of coronal mass ejections, which are transient expulsions of major quantities of magnetized plasma, from the Sun toward the heliosphere. The magnetic flux and helicity are two key physical magnitudes to track solar structures from the photosphere-corona to the interplanetary medium. To determine the content of flux and helicity in magnetic clouds, we have to know their 3D structure. However, since spacecrafts register data along a unique direction, several aspects of their global configuration cannot be observed. We present a method to estimate the magnetic flux and the magnetic helicity per unit length in magnetic clouds, directly from in situ magnetic observations, assuming only a cylindrical symmetry for the magnetic field configuration in the observed cross-section of the cloud. We select a set of 20 magnetic clouds observed by the spacecraft Wind and estimate their magnetic flux and their helicity per unit length. We compare the results obtained from our direct method with those obtained under the assumption of a helical linear force-free field. This direct method improves previous estimations of helicity in clouds.  相似文献   

6.
We studied the cyclic evolution of the latitudinal distribution of solar coronal active regions based on daily images from SOHO EIT for the period 1995–2017. Fully automated software was used, which included the following steps: initial preparation of images in the data series, normalization of histograms and correction of limb brightening, segmentation of images using threshold intensity values obtained from their histograms, scanning of segmented images in heliographic coordinates and obtaining profiles of latitudinal distribution of coronal active regions for each image of the data series. From the output data, we obtained a temporary change in the latitudinal distribution profiles and the migration of activity centers on the solar disk. From the period of minimum activity to the next minimum in both hemispheres, activity centers begin to migrate from high latitudes towards the equator. At the same time, the general center of activity repeatedly changes the direction of migration. The latitudinal distribution of the so-called presence factor of coronal active regions closely resembles the magnetic butterfly diagram, which proves their direct causal relationships. Variations in the presence factor of coronal active regions are correlated with cyclic variations in the sunspot daily numbers.  相似文献   

7.
We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173?Å as well as intensity at 1600?Å and 1700?Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10?mHz in HMI Doppler and AIA 1700?Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.  相似文献   

8.
It is generally assumed that magnetic fields inside interplanetary magnetic clouds and flux ropes in the solar photosphere are force-free. In order to model such fields, the solution of rot B = B is commonly used where  = const. But comparisons of this solutions with observations show significant difference. To treat this problem,we examine the solutions with .  相似文献   

9.
Cosmic strings are topological defects which were generated at a transition phase of the very early Universe and are probably responsible for large-scale structure forming. However, they may pull through all history and exist in the recent epoch. Thus, they can have influence for the recent Universe interacting with different objects. We consider the cosmic string behavior in the vicinity of a spinning black hole by means of a numerical simulation. Here we present preliminary results of this work via a comparison of cosmic string and magnetic flux tube behavior in the Kerr metric. Such an approach follows from the similarity of the equations which describe these objects. Therefore, many aspects of this behavior may be comparable.  相似文献   

10.
Mounting observational evidence of the emergence of twisted magnetic flux tubes through the photosphere have now been published. Such flux tubes, formed by the solar dynamo and transported through the convection zone, eventually reach the solar atmosphere. Their accumulation in the solar corona leads to flares and coronal mass ejections. Since reconnections occur during the evolution of the flux tubes, the concepts of twist and magnetic stress become inappropriate. Magnetic helicity, as a well preserved quantity, in particular in plasma with high magnetic Reynolds number, is a more suitable physical quantity to use, even if reconnection is involved.  相似文献   

11.
Using nine years (1995–2003) of solar wind plasma and magnetic field data, solar sunspot number, and geomagnetic activity data, we investigated the geomagnetic activity associated with magnetic clouds (MCs), magnetic cloud-like structures (MCLs), and interplanetary shock waves. Eighty-two MCs and one hundred and twenty-two MCLs were identified by using solar wind and magnetic field data from the WIND mission, and two hundred and sixty-one interplanetary shocks were identified over the period of 1995–2003 in the vicinity of Earth. It is found that MCs are typically more geoeffective than MCLs or interplanetary shocks. The occurrence frequency of MCs is not well correlated with sunspot number. By contrast, both occurrence frequency of MCLs and sudden storm commencements (SSCs) are well correlated with sunspot number.  相似文献   

12.
During the maximum of Solar Cycle 23, large active regions had a long life, spanning several solar rotations, and produced large numbers of X-class flares and CMEs, some of them associated to magnetic clouds (MCs). This is the case for the Halloween active regions in 2003. The most geoeffective MC of the cycle (Dst = −457) had its source during the disk passage of one of these active regions (NOAA 10501) on 18 November 2003. Such an activity was presumably due to continuous emerging magnetic flux that was observed during this passage. Moreover, the region exhibited a complex topology with multiple domains of different magnetic helicities. The complexity was observed to reach such unprecedented levels that a detailed multi-wavelength analysis is necessary to precisely identify the solar sources of CMEs and MCs. Magnetic clouds are identified using in situ measurements and interplanetary scintillation (IPS) data. Results from these two different sets of data are also compared.  相似文献   

13.
The relationship of auroral activity indices (AE, Kp, SME) with interplanetary medium parameters during the main phase of magnetic storms is studied. For the period 1990–2020, 142 magnetic storms driven by (41) Sheath, (61) CIR, and (40) ICME events are selected. It is found that the correlation coefficient between average values of the SME index and the SW electric field for Sheath (r = 0.75) is close to correlation coefficients for CIR and ICME events. The correlation coefficient between Kpaver&Eswaver (r = 0.72) is higher than the correlation coefficient between AEaver&Eswaver (r = 0.63) at the main phase of magnetic storms induced by the Sheath events. It is shown that average values of SW dynamic pressure and IMF σB fluctuations correlate each other for all types of SW.  相似文献   

14.
The magnetosheath plays a dominant role in the Sun–Earth connection because the magnetosheath field and plasma actually interact with the magnetosphere. The interactions change the magnetospheric magnetic field from its nominal value through a long chain of different processes. The change is usually described by geomagnetic indices and thus it can be expected that these indices would reflect changes in the magnetosheath. The present paper analyzes the relation between geomagnetic activity characterized by changes of the Kp, DST and AE indices and ion flux measured in the night-side magnetosheath. The results suggest a weak dependence of the DST index on the ion flux in the inner magnetosheath that is connected with a magnetopause displacement. On the other hand, fluctuations of the ion flux in the analyzed frequency range do not correlate with any of the indices.  相似文献   

15.
The SOHO/MDI data provide the uniform time series of the synoptic magnetic maps which cover the period of the cycle 23 and the beginning of the cycle 24. It is very interesting period because of the long and deep solar minimum between the cycles 23 and 24. Synoptic structure of the solar magnetic field shows variability during solar cycles. It is known that the magnetic activity contributes to the solar irradiance. The axisymmetrical distribution of the magnetic flux (Fig. 3c) is closely associated with the ‘butterfly’ diagram in the EUV emission (Benevolenskaya et al., 2001). And, also, the magnetic field (B) shows the non-uniform distributions of the solar activity with longitude, so-called ‘active zones’, and ‘coronal holes’ in the mid-latitude. Polar coronal holes are forming after the solar maxima and they persist during the solar minima. SOHO/EIT data in the emission of Fe XII (195 Å) could be a proxy for the coronal holes tracking. The active longitudinal zones or active longitude exist due to the reappearance of the activity and it is clearly seen in the synoptic structure of the solar cycle. On the descending branch of the solar cycle 23 active zones are less pronounced comparing with previous cycles 20, 21 and 22. Moreover, the weak polar magnetic field precedes the long and deep solar minimum. In this paper we have discussed the development of solar cycles 23 and 24 in details.  相似文献   

16.
In this work, the relation of high-latitude indices of geomagnetic activity (AE, Kp) with the rate of storm development and a solar wind electric field during the main phase of magnetic storm induced by the CIR and ICME events is investigated. 72 magnetic storms induced by CIR and ICME events have been selected. It is shown that for the CIR and ICME events the increase of average value of the Kp index (Kpaver) is observed with the growth of rate of storm development. The value of Kpaver index correlates with the magnitude of minimum value of Dst index (|Dstmin|) only for the ICME events. The analysis of average values of AE and Kp indices during the main phase of magnetic storm depending on the SW electric field has shown that for the CIR events, unlike the ICME events, the value of AEaver increases with the growth of average value of the electric field (Eswaver). The value of Kpaver correlates with the Eswaver only for the ICME events. The relation between geomagnetic indices and the maximum value of SW electric field (Eswmax) is weak. However, for the ICME events Kpaver correlates with Eswmax.  相似文献   

17.
In the present paper dependences of substorm activity on the solar wind velocity and southward component (Bz) of interplanetary magnetic field (IMF) during the main phase of magnetic storms, induced by the CIR and ICME events, is studied. Strong magnetic storms with close values of Dstmin?≈??100?±?10?nT are considered. For the period of 1979–2017 there are selected 26 magnetic storms induced by the CIR and ICME (MC?+?Ejecta) events. It is shown that for the CIR and ICME events the average value of the AE index (AEaver) at the main phase of magnetic storm correlates with the solar wind electric field. The highest correlation coefficient (r?=?0.73) is observed for the magnetic storms induced by the CIR events. It is found that the AEaver for magnetic storms induced by ICME events, unlike CIR events, increases with the growth of average value of the southward IMF Bz module. The analysis of dependence between the AEaver and average value of the solar wind velocity (Vswaver) during the main phase of magnetic storm shows that in the CIR events, unlike ICME, the AEaver correlates on the Vswaver.  相似文献   

18.
为有效解决太阳活动区磁场特征量化问题,对所有SOHO卫星MDI磁图预处理后,分割出日面角45°以内的活动区,分析活动区投影面积变形来源,研究建立Cosine面积校正因子,校正活动区面积,构建具有21个特征参数的活动区磁场特征量化指标体系,通过主成分分析法对量化结果计算累积方差,结合活动区10486爆发X17.2级耀斑时的磁场变化定性分析。结果表明:强梯度极性分隔线权重磁场绝对值之和R、极性分隔线长度LPS、 强梯度极性分隔线长度Lsg和强梯度极性分隔线磁场绝对值之和$\phi $PSL能够解释活动区磁场结构变化; 磁场通量绝对值总和$\phi $uns、磁场负通量总和$\phi $–、磁场值代数和$\phi $tot和磁场绝对值之和的平均值$\phi $mean能够解释活动区磁场通量变化。$\phi $PSL为本文新构建特征参数。上述参数可有效监测耀斑爆发前后活动区磁场结构和磁场通量的变化情况,量化结果可作为耀斑、质子事件监测及耀斑预报模型输入,为开展太阳爆发活动监测预警提供技术支撑。  相似文献   

19.
We present an automated comparison of magnetic field inversion line maps from SOHO/MDI magnetograms with solar filament data from the Solar Feature Catalogue created as part of the European Grid of Solar Observations project. The Euclidean distance transform and connected component labelling are used to identify nearest neighbour filament skeletons and inversion lines. Several filament-inversion line characteristics are defined and used to automate the decision whether a particular filament/inversion line pair is suitable for quantitative comparison of orientation and separation. The technique is tested on a total of 207 filaments from four Hα images, and the distributions of angles and distances between filament skeletons and LOS magnetic inversion lines are presented for six degrees of magnetic field smoothing. The results show the approach is robust and can be applied for a statistical analysis of magnetic field in filaments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号