首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

2.
Current measurements from DIARAD/VIRGO, PMO6V/VIRGO and ACRIM3 radiometers are of the same order of magnitude, but differ from TIM/SORCE by about 4.5 W m−2. This difference is higher than the sum of the claimed individual absolute uncertainties of the instruments. In this context, the SOLAR payload on the International Space Station embarks the SOVIM package. We give the results of the differential absolute radiometer DIARAD/SOVIM and discuss its associated uncertainties. Compared to DIARAD/VIRGO, all possible efforts have been made to improve the absolute accuracy. Substantial progress has been made in the aperture area and electrical power measurements. The measured TSI value from the left channel of DIARAD/SOVIM during three days of June 2008 is 1364.50 ± 1.38 W m−2 (Total) or ±0.49 W m−2 (if we combine the individual contributions in quadrature). The right channel gives 1364.75 W m−2 with the same uncertainties. These values are about 1.2 W m−2 lower than DIARAD/VIRGO and about 4 W m−2 higher than TIM/SORCE. The difference between the left and right channels measurements is as low as 0.25 W m−2 which is within the improved uncertainty limits.  相似文献   

3.
The Balloon-borne Experiment with a Super-solenoidal Spectrometer (BESS) instrument has been flown annually from Lynn Lake Manitoba since 1993. The instrument has been upgraded several times to improve its performance. The instalment flown in 1998 was able to detect 2H clearly between 0.13 and 1.78 GeV/n as a result of improvements made on the time-of-flight (TOF) system. The BESS 98 data were analyzed to obtain the ratio and absolute fluxes of 1H and 2H over this energy range. The results were compared with different cosmic ray propagation models and their implications regarding their propagation history are discussed in this paper.  相似文献   

4.
Accelerated energetic particles in solar flares produced nuclear γ-lines in interactions with ambient solar atmosphere. Analysis of intensity of ratios between various γ-lines allows us to make estimations of abundance of elements, parameters of surrounding media and other solar characteristics. In this article we discuss the flux ratio between two lines from excited states of 12C (f15.11/f4.44) and our results of preliminary calculation of intensity ratio between two neutron capture lines at 3He and 1H (f20.58/f2.223). In particular we consider the opportunity to obtain n(3He)/n(1H) ratio during solar flares and using high-energy gamma-emission studying, based on the satellite data. Possible interpretation of spectral features observed during the January 20, 2005 solar flare is discussed. Preliminary analysis of energy spectrum in the band of 2–21 MeV gives n(3He)/n(1H) ∼ 8 × 10−4 for January 20, 2005 solar flare.  相似文献   

5.
Nearby pulsars B0656+14 and Geminga were proposed in the literature as the main sources of cosmic-ray positrons observed near Earth above 10 GeV. B0656+14 has comparable distance from Earth, similar magnetic field and period of Geminga. However, observations in the R and I bands indicate the presence of a disk of approximately 10−4 M around B0656+14. Radio and pulsed γ-ray flux observations from this pulsar are also consistent with supernova fallback material and disk entering the light cylinder and partially quenching the development of electromagnetic showers in the magnetosphere. If this is the case, B0656+14 has unlikely given any contribution to e+ and e observed near Earth. Absolute flux measurements and the level of anisotropy in the high energy electron and positron arrival directions above 50 GeV will help in revealing if none, one of both nearby pulsars are sources of these particles observed near Earth.  相似文献   

6.
We report the measurements of the response of a delta-doped Charge Coupled Device (CCD) in imaging mode to beams of charged and neutral particles. That is, the detector imaged the incident beam over its 1024 × 1024 pixels, integrating the number of particles counted in each pixel during the exposure period. In order to count individual particles the exposure time would have had to be reduced considerably compared to the typical ?5 s used in these studies. Our CCD thus operated in a different manner than do conventional particle detectors such as the CEM and MCP that normally are used in a particle counting mode. The measurements were carried out over an energy range from 0.8 to 30 keV. The species investigated include H, H+, He+, N+, N2+, and Ar+. The energy and ion mass covered wider ranges than previous measurements for the CCD. The results of these measurements show, as in the case of the previous measurement, for a given ion the CCD response increases with energy and for a given particle energy the response decreases with increasing mass of the particle. These results are in agreement with predictions of the theory of the range of ions in solids. The results also show the possibility for the application of the delta doped CCD as a detector for low energy particle measurements for space plasma physics applications.  相似文献   

7.
Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October–November 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.  相似文献   

8.
X-ray observations indicate that the Galactic black hole Sgr A is inactive now, however, we suggest that Sgr A can become active when a captured star is tidally disrupted and matter is accreted into the black hole. Consequently the Galactic black hole could be a powerful source of relativistic protons with a characteristic energy ∼1052 erg per capture. The diffuse GeV and TeV γ-rays emitted in the direction of the Galactic Center (GC) are the direct consequences of p–p collisions of such relativistic protons ejected by very recent capture events occurred ?105 yr ago. On the other hand, the extended electron-positron annihilation line emission observed from GC is a phenomenon related to a large population of thermalized positrons, which are produced, cooled down and accumulated through hundreds of past capture events during a period of ∼107 yr. In addition to explaining GeV, TeV and 511 keV annihilation emissions we also estimate the photon flux of several MeV resulting from in-flight annihilation process.  相似文献   

9.
The solar flare of January 20, 2005 (X7.1, 06:36–07:26 UT, maximum at 07:01 UT by the GOES soft X-ray data) was the most powerful one in January 2005 series. The AVS-F apparatus onboard CORONAS-F registered γ-emission during soft X-ray rising phase of this flare in two energy ranges of 0.1–20 MeV and 2–140 MeV. The highest γ-ray energy registered during this flare was ∼140 MeV. Six spectral features were registered in energy spectrum of this solar flare: annihilation + αα (0.4–0.6 MeV), 24Mg + 20Ne + 28Si + neutron capture (1.7–2.3 MeV), 21Ne + 22Ne + 16O + 12С (3.2–5.0 MeV), 16O (5.3–6.9 MeV), one from neutral pions decay (25–110 MeV) and one in energy band 15–21 MeV. Four of them contain typical for solar flares lines – annihilation, nuclear de-excitation and neutron capture at 1H. Spectral feature caused by neutral pions decay was registered during several flares too. Some spectral peculiarities in the region of 15–21 MeV were first observed in solar flare energy spectrum.  相似文献   

10.
An experiment utilizing cowpeas (Vigna unguiculata L.), pinto beans (Phaseolus vulgaris L.) and Apogee ultra-dwarf wheat (Triticum sativa L.) was conducted in the soil-based closed ecological facility, Laboratory Biosphere, from February to May 2005. The lighting regime was 13 h light/11 h dark at a light intensity of 960 μmol m−2 s−1, 45 mol m−2 day−1 supplied by high-pressure sodium lamps. The pinto beans and cowpeas were grown at two different planting densities. Pinto bean production was 341.5 g dry seed m−2 (5.42 g m−2 day−1) and 579.5 dry seed m−2 (9.20 g m−2 day−1) at planted densities of 32.5 plants m−2 and 37.5 plants m−2, respectively. Cowpea yielded 187.9 g dry seed m−2 (2.21 g m−2 day−1) and 348.8 dry seed m−2 (4.10 g m−2 day−1) at planted densities of 20.8 plants m−2 and 27.7 plants m−2, respectively. The crop was grown at elevated atmospheric carbon dioxide levels, with levels ranging from 300–3000 ppm daily during the majority of the crop cycle. During early stages (first 10 days) of the crop, CO2 was allowed to rise to 7860 ppm while soil respiration dominated, and then was brought down by plant photosynthesis. CO2 was injected 27 times during days 29–71 to replenish CO2 used by the crop during photosynthesis. Temperature regime was 24–28 °C day/deg 20–24 °C night. Pinto bean matured and was harvested 20 days earlier than is typical for this variety, while the cowpea, which had trouble establishing, took 25 days more for harvest than typical for this variety. Productivity and atmospheric dynamic results of these studies contribute toward the design of an envisioned ground-based test bed prototype Mars base.  相似文献   

11.
The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV–300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ∼75 and ∼140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.  相似文献   

12.
Plants can provide a means for removing carbon dioxide (CO2) while generating oxygen (O2) and clean water for life support systems in space. To study this, 20 m2 stands of potato (Solanum tuberosum L.) plants were grown in a large (113 m3 vol.), atmospherically closed chamber. Photosynthetic uptake of CO2 by the stands was detected about 10 DAP (days after planting), after which photosynthetic rates rose rapidly as stand ground cover and total light interception increased. Photosynthetic rates peaked ca. 50 DAP near 45 μmol CO2 m−2 s−1 under 865 μmol m−2 s−1 PPF (average photosynthetic photon flux), and near 35 μmol CO2 m−2 s−1 under 655 μmol m−2 s−1 PPF. Short term changes in PPF caused a linear response in stand photosynthetic rates up to 1100 μmol m−2 s−1 PPF, with a light compensation point of 185 μmol m−2 s−1 PPF. Comparisons of stand photosynthetic rates at different CO2 concentrations showed a classic C3 response, with saturation occurring near 1200 μmol mol−1 CO2 and compensation near 100 μmol mol−1 CO2. In one study, the photoperiod was changed from 12 h light/12 h dark to continuous light at 58 DAP. This caused a decrease in net photosynthetic rates within 48 h and eventual damage (scorching) of upper canopy leaves, suggesting the abrupt change stressed the plants and/or caused feedback effects on photosynthesis. Dark period (night) respiration rates increased during early growth as standing biomass increased and peaked near 9 μmol CO2 m−2 s−1 ca. 50 DAP, after which rates declined gradually with age. Stand transpiration showed a rapid rise with canopy ground cover and peaked ca. 50 DAP near 8.9 L m−2 d−1 under 860 μmol m−2 s−1 PPF and near 6.3 L m−2 d−1 under 650 μmol m−2 s−1 PPF. Based on the best photosynthetic rates from these studies, approximately 25 m2 of potato plants under continuous cultivation would be required to support the CO2 removal and O2 requirements for one person.  相似文献   

13.
The purpose of this study was to evaluate dose–response relationships for the in vivo induction of micronuclei (MN) as a measure of both initial radiation damage and the induction of genomic instability. These measurements were made in mouse blood erythrocytes as a function of radiation dose, radiation quality, time after irradiation, and the genetic background of exposed individuals. Blood samples were collected from two strains of mouse (CBA/CaJ and C57BL/6J) at different times up to 3 months following a whole-body exposure to various doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy, at the dose rate of a 1 Gy/min) or 137Cs gamma rays (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min). Blood-smear slides were stained with acridine orange (AO). The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and in immature polychromatic-erythrocytes (MN-PCEs). Effects of both types of radiation on erythropoiesis were also evaluated. As a measure of cell progression delay, a dose-dependent decrease in numbers of PCEs was observed at day 2 post-exposure in both strains, regardless of radiation quality. Subsequently, the levels of PCEs increased in all exposed mice, reaching control levels (or higher) by day 7 post-exposure. Further, at day 2 after the exposure, there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in MN-NCEs in either strain of mouse exposed to 137Cs gamma rays. Additionally, at the early sacrifice times (days 2 and 4), 56Fe ions were slightly more effective (per unit dose) in inducing MN-NCEs than 137Cs gamma rays in CBA/CaJ mice. However, there was no increase in the frequency of MN-NCEs at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCEs frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo.  相似文献   

14.
The nighttime vertical E × B drifts velocities of the F2-region were inferred from the hourly hmF2 values obtained from ionosonde data over an African equatorial station, Ilorin (8.50oN, 4.68oE; dip lat. 2.95o) during period of low solar activity. For each season, the plasma drift Vz is characterized by an evening upward enhancement, then by a downward reversal at 1900 LT till around 0000 LT, except for June solstice. This was explained using the Rayleigh–Taylor (R-T) instability mechanism. The occasional drift differences in Vz obtained by inferred and direct measurement over Ilorin and Jicamarca, respectively are reflective of the importance of chemistry and divergent transport system due to both the E region electric and magnetic fields instead of simple motions. The pre-reversal enhancement (PRE) magnitude is higher during the equinoctial months than the solsticial months over Jicamarca, highest during December solstice and the equinoctial months over Ilorin, suggesting the dominance of higher E × B fountain during equinoxes at both stations. The lowest PRE magnitude was in June solstice. The appearance of post-noon peak in NmF2 around 1700 LT is highest during the equinoctial months and lowest during the solsticial period. A general sharp drop in NmF2 around 1800 LT is distinct immediately after sunset, lowest during June solstice and highest in March equinox. Our result suggests that between 0930 and 2100 LT, the general theory that vertical drifts obtained by digisonde measurements only match the E × B drift if the F layer is higher than 300 km is reliable, but does not hold for the nighttime period of 2200–0600 LT under condition of solar minima. Hence, the condition may not be sufficient for the representation of vertical plasma drift at nighttime during solar minima. This assertion may still be tentative, as more equatorial stations needed to be studied for better confirmation.  相似文献   

15.
Chlorophyll and suspended sediment concentrations (SSC) and sea surface temperature (SST) are important parameters in assessing the productivity of coastal regions. Numerous rivers flow into the eastern (Ganga, Subernarekha, Mahanadi, Godavari, Krishna, Penner, and Kaveri) and western (Narmada, Tapti, and Indus) coasts of the Indian sub-continent. Using IRS P4 (Oceansat-1) Ocean Color Monitor (OCM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, we have retrieved chlorophyll, calcite, and SSC near the mouth of these rivers for the period during 2000–2004. The maxima of chlorophyll-a concentrations at the river mouth is much higher for the Himalayan and north India rivers (Ganga, Subernarekha, Mahanadi, and Indus) (10–14 mg/m3) compared to rivers in the southern parts of India (Kaveri and Penner) (∼4 mg/m3). The maxima of calcite concentration (∼45 moles/m3), chlorophyll (∼14 mg/m3), and sediment concentrations (∼9 g/m3) near river mouth are found to be influenced by river discharges (Ganga and Brahmaputra) during the monsoon season. The calcite concentration (∼45 moles/m3) at the mouth of Ganga river shows a major peak with the onset of monsoon season (June–July) followed by a maxima in chlorophyll-a with a time lag of 1–2 months. The Krishna, Kaveri, and Penner rivers show low chlorophyll concentrations (3–8 mg/m3), high calcite (0–40 moles/m3), and low SSC (<3 g/m3) compared to Narmada and Tapti rivers (chlorophyll-a 12–14 mg/m3, calcite 0–2 moles/m3, and SSC 13–19 g/m3). The Indus river shows similar behavior (maxima of chlorophyll ∼13 mg/m3 and SSC ∼8 g/m3) with respect to Ganga river except for high calcite concentration during winter months (∼25 moles/m3). The characteristics of the chlorophyll, calcite, and SSC at the mouth of these rivers show spatial and temporal variability along the eastern and westerns coasts of India which are found to differ widely. A comparison of the chlorophyll concentrations using OCM and MODIS data shows low chlorophyll concentrations in the Bay of Bengal as compared to the Arabian Sea.  相似文献   

16.
This paper investigated the data processing method for a GPS/IMU/magnetometer integrated system with Kalman filtering (KF). As a result of GPS/IMU/magnetometer land vehicle system, dead-reckoning of magnetometer and accelerometer integrated subsystem bridged very well the GPS signal outage due to the trees on the two sides of the road. Both differential GPS data processing method and the carrier-phase method with magnetometers’ outputs for predicting the car position, velocity, and acceleration (PVA) are presented. The results from DGPS with Kinematical Positioning (KINPOS) software shown that the averages of the north, east, and down direction standard deviation (short for “std”) are 0.014, 0.010, and 0.018 m, respectively. The std of velocities and accelerations derived by the position and velocity differentiation are 10, 7, 13 mm/s, 7, 5, 9 mm/s2, respectively. This method for getting velocities and accelerations requires higher accurate position coordinates. But the position accuracy has frequently been degraded in this case when the car drove under the trees or other similar kinematical environments. That caused the larger velocity and acceleration errors. While the results from the carrier-phase method are std of the velocities = 2.1 mm/s, 1.3 mm/s, 3.7 mm/s in north, east, down, and std of the accelerations = 1.5 mm/s2, 0.9 mm/s2, 2.3 mm/s2 for the static test period; as compared with KINPOS software results, std of the velocity difference between the carrier-phase method and the DGPS method = 7 mm/s, 6.9 mm/s, 9.7 mm/s in north, east, down direction, and std of acceleration difference = 5.0 mm/s2, 4.5 mm/s2, 7.5 mm/s2 in north, east, down direction for the kinematical test period. Obviously, errors come from both the carrier-phase method and DGPS velocity and acceleration results derived directly by the position differentiation. In addition, better accuracy of positions than that before KF has been got by means of velocities and accelerations derived by the carrier-phase method after KF.  相似文献   

17.
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS.  相似文献   

18.
The PAMELA experiment is devoted to the study of cosmic rays in Low Earth Orbit with an apparatus optimized to perform a precise determination of the galactic antimatter component of c.r. It is constituted by a number of detectors built around a permanent magnet spectrometer. PAMELA was launched in space on June 15th 2006 on board the Russian Resurs-DK1 satellite for a mission duration of 3 years. The characteristics of the detectors, the long lifetime and the orbit of the satellite, will allow to address several aspects of cosmic-ray physics. In this work we discuss the observational capabilities of PAMELA to detect the electron component above 50 MeV. The magnetic spectrometer allows a detailed measurement of the energy spectrum of electrons of galactic and Jovian origin. Long term measurements and correlations with Earth–Jupiter 13 months synodic period will allow to separate these two contributions and to measure the primary electron Jovian component, dominant in the 50–70 MeV energy range. With this technique it will also be possible to study the contribution to the electron spectrum of Jovian e reaccelerated up to 2 GeV at the Solar Wind Termination Shock.  相似文献   

19.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   

20.
The column densities of impact-produced metal atoms in the exosphere during the peaks of activity of the main meteor showers – Geminids, Quadrantids and Perseids – and during quiet periods are estimated. The Na supply rate is estimated to be 2 × 104, 3 × 103, 104, and 2 × 104 atoms cm−2 s−1 for sporadic meteoroids, Perseid, Geminid, and Quadrantid meteor showers, respectively. A low upper limit on Ca in the lunar exosphere is explained by the condensation of Ca into dust grains during expansion of the cooling impact-produced vapor cloud. The chemical composition of gas-phase species released to the lunar exosphere during meteoroid impacts has been estimated. Most impact-produced molecules that contain metals are destroyed by solar photons while on ballistic trajectories. Energies of Na, K, Ca, and Mg atoms produced via photolysis of the respective monoxides are estimated to be 0.4, 0.35, 0.6, and 0.45 eV, respectively. The relative content of impact-produced Na and K atoms is maximal at altitudes of about 1000–2000 km and during the main meteor showers, lunar eclipses, and passages of the Moon through the Earth’s magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号