共查询到20条相似文献,搜索用时 15 毫秒
1.
Bimal Pande Seema Pande Ramesh Chandra Mahesh Chandra Mathpal 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):777-785
We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010–2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity?≤?1?pfu), minor (1?pfu?<?proton intensity?<?10?pfu) and major (proton intensity?≥?10?pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs. 相似文献
2.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(5):2521-2533
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds 400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies 1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU. 相似文献
3.
N.C. Joshi W. Uddin A.K. Srivastava R. Chandra N. Gopalswamy P.K. Manoharan M.J. Aschwanden D.P. Choudhary R. Jain N.V. Nitta H. Xie S. Yashiro S. Akiyama P. Mäkelä P. Kayshap A.K. Awasthi V.C. Dwivedi K. Mahalakshmi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
4.
S.W. Kahler B.R. Ragot 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events. 相似文献
5.
M. Gerontidou H. Mavromichalaki A. Belov V. Kurt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The main properties of 11622 coronal mass ejections (CMEs) observed by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO-C2) from January 1996 through December 2006 are considered. Moreover, the extended database of solar proton enhancements (SPEs) with proton flux >0.1 pfu at energy >10 MeV measured at the Earth’s orbit is also studied. A comparison of these databases gives new results concerning the sources and acceleration mechanisms of solar energetic particles. Specifically, coronal mass ejections with width >180° (wide) and linear speed >800 km/s (fast) seem they have the best correlation with solar proton enhancements. The study of some specific solar parameters, such as soft X-ray flares, sunspot numbers, solar flare index etc. has showed that the soft X-ray flares with importance >M5 may provide a reasonable proxy index for the SPE production rate. From this work, it is outlined that the good relation of the fast and wide coronal mass ejections to proton enhancements seems to lead to a similar conclusion. In spite of the fact that in the case of CMEs the statistics cover only the last solar cycle, while the measurements of SXR flares are extended over three solar cycles, it is obvious for the studied period that the coronal mass ejections can also provide a good index for the solar proton production. 相似文献
6.
N. Gopalswamy H. Xie P. Mäkelä S. Yashiro S. Akiyama W. Uddin A.K. Srivastava N.C. Joshi R. Chandra P.K. Manoharan K. Mahalakshmi V.C. Dwivedi R. Jain A.K. Awasthi N.V. Nitta M.J. Aschwanden D.P. Choudhary 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona. 相似文献
7.
E. Valtonen T. Laitinen K. Huttunen-Heikinmaa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2295-2302
We have studied statistically associations of moderate and intense geomagnetic storms with coronal mass ejections (CMEs) and energetic particle events. The goal was to identify specific energetic particle signatures, which could be used to improve the predictions of the geoeffectiveness of full and partial halo CMEs. Protons in the range 1–110 MeV from the ERNE experiment onboard SOHO are used in the analysis. The study covers the time period from August 1996 to July 2000. We demonstrate the feasibility of energetic particle observations as an additional source of information in evaluating the geoeffectiveness of full and partial halo CMEs. Based on the observed onset times of solar energetic particle (SEP) events and energetic storm particle (ESP) events, we derive a proxy for the transit times of shocks driven by the interplanetary counterparts of coronal mass ejections from the Sun to the Earth. For a limited number of geomagnetic storms which can be associated to both SEP and ESP signatures, we found that this transit time correlates with the strength of geomagnetic storms. 相似文献
8.
Advances in modeling gradual solar energetic particle events 总被引:1,自引:0,他引:1
D. Lario 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2279-2288
Solar energetic particles pose one of the most serious hazards to space probes, satellites and astronauts. The most intense and largest solar energetic particle events are closely associated with fast coronal mass ejections able to drive interplanetary shock waves as they propagate through interplanetary space. The simulation of these particle events requires knowledge of how particles and shocks propagate through the interplanetary medium, and how shocks accelerate and inject particles into interplanetary space. Several models have appeared in the literature that attempt to model these energetic particle events. Each model presents its own simplifying assumptions in order to tackle the series of complex phenomena occurring during the development of such events. The accuracy of these models depends upon the approximations used to describe the physical processes involved in the events. We review the current models used to describe gradual solar energetic particle events, their advances and shortcomings, and their possible applications to space weather forecasting. 相似文献
9.
J. Uwamahoro L.-A. McKinnell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Estimating the magnetic storm effectiveness of solar and associated interplanetary phenomena is of practical importance for space weather modelling and prediction. This article presents results of a qualitative and quantitative analysis of the probable causes of geomagnetic storms during the 11-year period of solar cycle 23: 1996–2006. Potential solar causes of 229 magnetic storms (Dst ? −50 nT) were investigated with a particular focus on halo coronal mass ejections (CMEs). A 5-day time window prior to the storm onset was considered to track backward the Sun’s eruptions of halo CMEs using the SOHO/LASCO CMEs catalogue list. Solar and interplanetary (IP) properties associated with halo CMEs were investigated and correlated to the resulting geomagnetic storms (GMS). In addition, a comparative analysis between full and partial halo CME-driven storms is established. The results obtained show that about 83% of intense storms (Dst ? −100 nT) were associated with halo CMEs. For moderate storms (−100 nT < Dst ? −50 nT), only 54% had halo CME background, while the remaining 46% were assumed to be associated with corotating interaction regions (CIRs) or undetected frontside CMEs. It was observed in this study that intense storms were mostly associated with full halo CMEs, while partial halo CMEs were generally followed by moderate storms. This analysis indicates that up to 86% of intense storms were associated with interplanetary coronal mass ejections (ICMEs) at 1 AU, as compared to moderate storms with only 44% of ICME association. Many other quantitative results are presented in this paper, providing an estimate of solar and IP precursor properties of GMS within an average 11-year solar activity cycle. The results of this study constitute a key step towards improving space weather modelling and prediction. 相似文献
10.
P. Pappa Kalaivani O. Prakash Li Feng A. Shanmugaraju Liu-Guan Ding Lei Lu Weiqun Gan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3390-3403
We have established a data set of 58 major hybrid SEP events associated with meter-to-decahectometer wavelength (m-to-DH) type II bursts, solar flares, and radio-load CMEs during the period of 1997–2014. The main focus of our study is to address the following two questions: Does the interaction of CMEs play a role in the enhancement of SEP intensity? Is there any difference in the seed population, and parent eruptions in the SEP events with and without CME interactions? Hence, the sample of 58 events is classified into two sets: (i) 35 non-interacting-CME-associated SEP events; (ii) 23 interacting-CME-associated SEP events. All the characteristics of SEPs, their associated CMEs/flares and the relationships between them are statistically analyzed and compared. Some of the basic attributes and relative elemental abundances (Fe/O ratios) of the both the sets are also compared. The results indicate that the seed particles in non-interacting-CME-associated SEP events are mostly from solar wind/coronal materials. But in the case of interacting-CME-associated SEP events, it may be associated with both flare material from preceding flares and coronal materials from solar wind/preceding CMEs. The correlation studies reveal that there are clear correlations between logarithmic peak intensity of SEP events and properties of CMEs (space speed: cc?=?0.56) and solar flares (peak intensity: cc?=?0.40; integrated flux: cc?=?0.52) for non-interacting-CME-associated SEP events. But these correlations are absent for the interacting-CME-associated events. In addition, the results suggest that interaction of primary CMEs with their preceding CMEs plays an important role in the enhancement of peak intensity of SEPs at least for a set of m-to-DH type II bursts associated SEP events. 相似文献
11.
12.
C. Caroubalos P. Preka-Papadema H. Mavromichalaki X. Moussas A. Papaioannou E. Mitsakou A. Hillaris 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13–14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere. 相似文献
13.
Mohamed Nedal M. Youssef Ayman Mahrous Rabab Helal 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(5):1824-1836
We studied a set of 74 CMEs, with shedding the light on the halo-CMEs (HCMEs), that are associated with decametric – hectometric (DH) type-II radio bursts (1–16?MHz) and solar flares during the period 2008–2014. The events were classified into 3 groups (disk, intermediate, and limb events) based on their longitudinal distribution.We found that the events are mostly distributed around 15.32° and 15.97° at the northern and southern solar hemispheres, respectively. We found that there is a clear dependence between the longitude and the CME’s width, speed, acceleration, mass, and kinetic energy. For the CMEs’ widths, most of the events were HCMEs (~62%), while the partial HCMEs comprised ~35% and the rest of events were CMEs with widths less than 120°. For the CMEs’ speeds, masses, and kinetic energies, the mean values showed a direct proportionality with the longitude, in which the limb events had the highest speeds, the largest masses, and the highest kinetic energies. The mean peak flux of the solar flares for different longitudes was comparable, but the disk flares were more energetic. The intermediate flares were considered as gradual flares since they tended to last longer, while the limb flares were considered as impulsive flares since they tended to last shorter.A weak correlation (R?=?0.32) between the kinetic energy of the CMEs and the duration of the associated flares has been noticed, while there was a good correlation (R?=?0.76) between the kinetic energy of the CMEs and the peak flux of the associated flares. We found a fair correlation (R?=?0.58) between the kinetic energy of the CMEs and the duration of the associated DH type-II radio bursts. 相似文献
14.
A. Aran B. Sanahuja D. Lario 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1492-1499
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes. 相似文献
15.
Partha Chowdhury Manoranjan Khan P.C. Ray 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
In this paper, we have investigated the intermediate-term periodicities of the relativistic (E > 10 MeV) solar electron flares measured by IMP-8 satellite of NASA for the time period of 1986–2001. This period of investigation includes the entire solar cycle 22; ascending, maximum and a part of descending phase of the current solar cycle 23. To determine accurately the occurrence rate of electron flux, we have employed three different spectral decomposition techniques, viz. fast Fourier transformation (FFT); maximum entropy method (MEM) and Lomb–Scargle periodogram analysis method. For solar cycle 22, in the low frequency range, power spectrum analysis exhibits statistically significant periodicities at ∼706, ∼504 and ∼392 days. In the intermediate frequency range, we have found a series of significant periodicities ∼294, ∼221, ∼153, ∼86, ∼73 and ∼66 days. For short term, periodicities of ∼21–23, ∼31 and ∼37 days were found in power spectrum. When solar cycle 23 is considered the significant periodicities are ∼20, ∼23, ∼29, ∼39, ∼54, ∼63, ∼118, ∼133 and ∼154 days. These results provide evidence that the best known Rieger period (∼153 days), appeared in the high energetic electron flux data for cycle 22 and also likely during maxima of cycle 23. The existence of these periodicities has been discussed in the light of earlier results. 相似文献
16.
A. Damiani P. Diego M. Laurenza M. Storini C. Rafanelli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Data from geostationary operational environmental satellite (GOES) series were used to identify intense solar energetic particle (SEP) events occurred during the solar activity cycle no. 23. We retrieved O3, NO, NO2, HNO3, OH, HCl and OHCl profiles coming from different satellite sensors (solar occultation and limb emission) and we looked for the mesospheric/stratospheric response to SEPs at high terrestrial latitudes. The chemistry of the minor atmospheric components is analysed to evaluate the associated odd nitrogen (NOx) and odd hydrogen (HOx) production, able to cause short (h) and medium (days) term ozone variations. We investigated the effects of SEPs on the polar atmosphere in three different seasons, i.e., January 2005, April 2002 and July 2000. The inter-hemispheric variability of the ozone, induced by the SEP series of January 2005, has been compared with the effects connected both to larger and quite similar events. We found that during SEP events: (i) solar illumination is the key factor driving SEP-induced effects on the chemistry of the polar atmosphere; (ii) even events with limited particle flux in the range 15–40 MeV are able to change the abundance of the minor constituents in the mesosphere and upper stratosphere. 相似文献
17.
E. Mitsakou G. Babasidis X. Moussas 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We have used Omniweb data in order to identify the sheath and the ejecta boundaries of 67 shock-driving interplanetary coronal mass ejections during the time period 2003–2006. We examine and compare their statistical properties (speed, magnetic field strength, proton density and temperature, proton plasma beta), with those of the typical solar wind. We also calculate their passage time and radial width. We study the correlation between the ejecta and sheath characteristics. 相似文献
18.
Ruiguang Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1835-1841
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index −100 nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed. 相似文献
19.
Xiaocan Li Brahmananda Dasgupta Gang Li 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We investigate the acceleration of charged particles in a time-dependent chaotic magnetic field in this work. In earlier works, it has been demonstrated that in an asymmetric wire-loop current systems (WLCSs), the magnetic field is of chaotic in nature. Furthermore, observations also showed that there exist time-varying current loops and current filaments in solar corona. It is therefore natural to conceive that the magnetic field on the solar surface is chaotic and time-dependent. Here, we develop a numerical model to study the acceleration process of charged particles in a time-varying chaotic magnetic field that is generated by an ensemble of 8 WLCSs. We found that the motion of energetic particles in the system is of diffusive in nature and a power law spectrum can quickly develop. The mechanism examined here may serve as an efficient pre-acceleration mechanism that generates the so-called seed particles for diffusive shock acceleration at a coronal mass ejection (CME) driven shock in large solar energetic particle (SEP) events. 相似文献
20.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(4):2017-2037
Solar flares and coronal mass ejections (CMEs) cause immediate and adverse effects on the interplanetary space and geospace. In an era of space-based technical civilization, the deeper understanding of the mechanisms that produce them and the construction of efficient prediction schemes are of paramount importance. The source regions of flares and CMEs exhibit some common morphological characteristics, such as -spots, filaments and sigmoids, which are associated with strongly sheared magnetic polarity inversion lines, indicative of the complex magnetic configurations that store huge amounts of free magnetic energy and helicity. The challenge is to transform this empirical knowledge into parameters/predictors that can help us distinguish efficiently between quiet, flare-, and CME-productive (eruptive) active regions. This paper reviews these efforts to parameterize the characteristics of eruptive active regions as well as the importance of transforming new knowledge into more efficient predictors and including new types of data. Magnetic properties of active regions were first introduced when systematic ground-based observations of the photospheric magnetic field became possible and the relevant research was boosted by the provision of near real time, uninterrupted, high-quality observations from space, which allowed the study of large, statistically significant samples. Nonetheless, flare and CME prediction still faces a number of challenges. The magnetic field information is still constrained at the photospheric level and accessed only from one vantage point of observation, thus there is always need for better predictors; the dynamic behavior of active regions is still not fully incorporated into predictions; the inherent stochasticity of flares and CMEs renders their prediction probabilistic, thus benchmark sets are necessary to optimize and validate predictions. To meet these challenges, researchers have put forward new magnetic properties, which describe different aspects of magnetic energy storage mechanisms in active regions and offer the opportunity of parametric studies for over an entire solar cycle. This inventory of features/predictors is now expanded to include information from flow fields, transition region and coronal spectroscopy, data-driven modeling of the coronal magnetic field, as well as parameterizations of dynamic effects from time series. Further work towards these directions may help alleviate the current limitations in observing the magnetic field of higher atmospheric layers. In this task, fundamental and operational research converge, with promising results which could stimulate the development of new missions and lay the ground for future exploratory studies, also profiting from and utilizing the long anticipated observations of the new generation of instruments. 相似文献