首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The Global Positioning System (GPS) Radio Occultation (RO) technique has global coverage and is capable of generating high vertical resolution temperature profiles of the upper troposphere and lower stratosphere with sub-Kelvin accuracy and long-term stability, regardless of weather conditions. In this work, we take advantage of the anomalously high density of occultation events at the eastern side of the highest Andes Mountains during the initial mission months of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate). This region is well-known for its high wave activity. We choose to study two pairs of GPS RO, both containing two occultations that occurred close in time and space. One pair shows significant differences between both temperature profiles. Numerical simulations with a mesoscale model were performed, in order to understand this discrepancy. It is attributed to the presence of a horizontal inhomogeneous structure caused by gravity waves.  相似文献   

2.
In a previous paper by Schmidt et al. (2008), from CHAllenging Minisatellite Payload (CHAMP) Global Positioning System (GPS) radio occultation data, a comparison was made between a Gaussian filter applied to the “complete” temperature profile and to its “separate” tropospheric and stratospheric height intervals, for gravity wave analyses. It was found that the separate filtering method considerably reduces a wave activity artificial enhancement near the tropopause, presumably due to the isolation process of the wave component. We now propose a simple approach to estimate the uncertainty in the calculation of the mean specific wave potential energy content, due exclusively to the filtering process of vertical temperature profiles, independently of the experimental origin of the data. The approach is developed through a statistical simulation, built up from the superposition of synthetic wave perturbations. These are adjusted by a recent gravity wave (GW) climatology and temperature profiles from reanalyses. A systematic overestimation of the mean specific wave potential energy content is detected and its variability with latitude, altitude, season and averaging height interval is highlighted.  相似文献   

3.
    
The existence of a “dense” lunar ionosphere has been controversial for decades. Positive ions produced from the lunar surface and exosphere are inferred to have densities that are ?106107 m?3 near the surface and smaller at higher altitudes, yet electron densities derived from radio occultation measurements occasionally exceed these values by orders of magnitude. For example, about 4% of the single-spacecraft radio occultation measurements from Kaguya/SELENE were consistent with peak electron densities of ~3×108 m?3. Space plasmas should be neutral on macroscopic scales, so this represents a substantial discrepancy. Aditional observations of electron densities in the lunar ionosphere are critical to resolving this longstanding paradox. Here we theoretically assess whether radio occultation observations using two-way coherent S-band radio signals from the Lunar Reconnaissance Orbiter (LRO) spacecraft could provide useful measurements of electron densities in the lunar ionosphere. We predict the uncertainty in a single LRO radio occultation measurement of electron density to be ~3×108 m?3, comparable to occasional observations by Kaguya/SELENE of a dense lunar ionosphere. Thus an individual profile from LRO is unlikely to reliably detect the lunar ionosphere; however, averages of multiple (~10) LRO profiles acquired under similar geophysical and viewing conditions should be able to make reliable detections. An observing rate of six ingress occultations per day (~2000 per year) could be achieved with minimal impact on current LRO operations. This rate compares favorably with the 378 observations reported from the single-spacecraft experiment on Kaguya/SELENE between November 2007 and June 2009. The large number of observations possible for LRO would be sufficient to permit wide-ranging investigations of spatial and temporal variations in the poorly understood lunar ionosphere. These findings strengthen efforts to conduct such observations with LRO.  相似文献   

4.
基于COSMIC卫星观测的2006年12月29日到2008年1月3日30°-40°N纬度内的温度剖面,分别利用垂直滑动窗、双滤波器和单滤波器三种方法计算低平流层重力波的扰动和势能,获得重力波扰动和势能随高度、经度的分布以及多时间尺度变化特性,分析重力波扰动势能与背景温度及风场的变化趋势和特点.比较三种方法得到的结果发现:垂直滑动窗方法只能去除大垂直尺度的背景,无法抑制小尺度的扰动,其得到的结果误差较大;双滤波器法对温度剖面中的大尺度背景和小尺度扰动都能很好地抑制;单滤波器法得到的重力波扰动中基本不包含垂直方向的大尺度背景,但是包含一些小垂直尺度的扰动.因此,对于垂直波长为10km左右的重力波,采用双滤波器法合适;如果需要得到小尺度重力波的变化特性,采用单滤波器法合适.采用双滤波器法无法得到势能随高度的变化,而采用单滤波器法能够给出每月势能随高度的分布.对30°-40°N纬度内的重力波参数进行统计分析得到重力波扰动、势能与背景温度和水平风场的关系.  相似文献   

5.
    
In the coming years, opportunities for remote sensing of electron density in the Earth’s ionosphere will expand with the advent of Galileo, which will become part of the global navigation satellite system (GNSS). Methods for accurate electron density retrieval from radio occultation data continue to improve. We describe a new method of electron density retrieval using total electron content measurements obtained in low Earth orbit. This method can be applied to data from dual-frequency receivers tracking the GPS or Galileo transmitters. This simulation study demonstrates that the method significantly improves retrieval accuracy compared to the standard Abel inversion approach that assumes a spherically symmetric ionosphere. Our method incorporates horizontal gradient information available from global maps of Total Electron Content (TEC), which are available from the International GNSS Service (IGS) on a routine basis. The combination of ground and space measurements allows us to improve the accuracy of electron density profiles near the occultation tangent point in the E and F regions of the ionosphere.  相似文献   

6.
We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.  相似文献   

7.
8.
QX-1 GNOS M是首台在轨实现北斗、GPS和Galileo三系统兼容的小型商业化全球导航卫星掩星探测仪. 2021年10月14日18:51 LT, 气象一号(QX-1)卫星发射并入轨. 自发射以来, 该卫星已收集大量观测数据. 基于QX-1 GNOS M的结构组成及性能, 统计分析了2022年8月17日全天的掩星事件及其全球分布情况. 通过将8月17日至9月3日的掩星数据与NCEP再分析模式对比, 评估QX-1掩星事件的探测穿透深度和折射率精度, 同时检验Galileo掩星数据的可靠性和一致性. 初步分析结果表明, QX-1 GNOS M在实现三系统兼容后, 掩星事件数量相较于仅使用GPS系统的情况增加了约1.5倍. 这一结果进一步证明, 不同全球导航卫星系统(GNSS)所提供的掩星数据在精度上具有一致性. 此外研究显示, 在多系统兼容的背景下, QX-1 GNOS M能够提供更为丰富和精确的气象数据.  相似文献   

9.
Global Positioning System (GPS) receiver on the CHAllenging Mini-satellite Payload (CHAMP) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, provide middle atmosphere temperature profiles by Radio Occultation (RO) and limb viewing infrared emission measurements, respectively. These temperature profiles retrieved by two different techniques in the stratosphere are compared with each other using more than 1300 correlative profiles in March, September and December 2005. The over-all mean differences averaged over 15 and 35 km are approximately −2 K and standard deviation is less than 3 K. Below 20 km of altitude, relatively small mean temperature differences ∼1 K are observed in wide latitudinal range except for June (during the SABER nighttime observation). In the middle to low latitudes, between 30°S and 30°N, the temperature difference increases with height from ∼0–1 K at 15 km, to ∼−4 K at 35 km of altitude. Large temperature differences about −4 to −6 K are observed between 60°S and 30°N and 31–35 km of altitude for all months and between 0° and 30°N below 16 km during June (nighttime).  相似文献   

10.
重力波波包在可压大气中的非线性传播   总被引:26,自引:14,他引:12  
本文采用二维全隐欧拉(FICE)格式对具有高斯分布的重力波波包在等温、可压大气中的非线性传播过程进行数值模拟和分析.数值分析结果表明:尽管存在非线性效应,在整个传播过程中,波动的等相面向下运动,波包和波相关能量向上传输.波相关扰动速度随高度增加指数增长,并且波与平流会发生非线性相互作用,最后导致平均流场增强.这与线性重力波理论完全一致.重力波波包的传播路径与重力波线性射线理论预言非常接近,但平均水平群速度和平均垂直群速度均明显小于线性射线理论给出的结果,可见波动的非线性过程会改变波相关能量的传输速度.模拟结果首次定量地展示出非线性效应对重力波波包传播的影响,表明建立在线性理论框架中的重力波运动学定义的合理性.  相似文献   

11.
风云三号C星GNOS北斗掩星电离层探测初步结果   总被引:2,自引:1,他引:2       下载免费PDF全文
利用风云三号卫星C星GNOS掩星探测仪电离层数据,分析了2013年10月FY-3C GNOS探测的北斗掩星电离层廓线分布,将2013年10月1日至2015年10月10日期间FY-3C GNOS观测的F2层峰值电子密度(NmF2)与地面电离层测高仪观测结果进行对比,验证了FY-3C GNOS北斗电离层掩星的探测精度.结果表明,FY3-C GNOS北斗电离层掩星与电离层测高仪探测的NmF2数据相关系数为0.96,平均偏差为10.21%,标准差为19.61%.在不同情况下其数据精度有如下特征:白天精度高于夜晚;夏季精度高于分季,分季精度高于冬季;中纬地区精度高于低纬地区,低纬地区精度高于高纬地区; BDS倾斜同步轨道(IGSO)卫星精度高于同步轨道(GEO)卫星和中轨道(MEO)卫星.FY-3C GNOS北斗电离层掩星与国际上其他掩星电离层数据精度的一致性对GNSS掩星探测资料的综合利用具有重大意义.  相似文献   

12.
本文采用二维全隐欧拉格式对具有高斯分布的重力波波包在非等温,可压大气中的非线性传播过程进行数值模拟。  相似文献   

13.
EUMETSAT has launched the first in a series of three Metop satellites in October 2006. Each satellite has a nominal 5 year life time, covering 14 years in total. Successive satellites will be launched with about 0.5 year overlap into the same sun-synchronous polar orbit, allowing inter-satellite calibration.  相似文献   

14.
‘Onion-peeling’ is a very common technique used to invert Radio Occultation (RO) data in the ionosphere. Because of the implicit assumption of spherical symmetry for the electron density (N(e)) distribution in the ionosphere, the standard Onion-peeling algorithm could give erroneous concentration values in the retrieved electron density profile. In particular, this happens when strong horizontal ionospheric electron density gradients are present, like for example in the Equatorial Ionization Anomaly (EIA) region during high solar activity periods. In this work, using simulated RO Total Electron Content (TEC) data computed by means of the NeQuick2 ionospheric electron density model and ideal RO geometries, we tried to formulate and evaluate an asymmetry level index for quasi-horizontal TEC observations. The asymmetry index is based on the electron density variation that a signal may experience along its path (satellite to satellite link) in a RO event and is strictly dependent on the occultation geometry (e.g. azimuth of the occultation plane). A very good correlation has been found between the asymmetry index and errors related to the inversion products, in particular those concerning the peak electron density NmF2 estimate and the Vertical TEC (VTEC) evaluation.  相似文献   

15.
介绍了ROPP反演软件中无线电掩星反演的算法与精度分析. 采用COSMIC卫星2008年1 月1日全天的附加相位数据, 反演得到折射率、温度、压强与湿度等参数, 并与CDAAC 相应结果进行对比. 实验结果表明, 在30km高度以下, 折射率、压强和湿度的相对 误差在2%以内, 温度误差不超过2K.  相似文献   

16.
The GRAS radio occultation instrument is flying on Metop-A and belongs to the EPS (EUMETSAT Polar System). GRAS observes GPS satellites in occultation. Within this work, validation of GRAS closed-loop bending angle data against co-located ECMWF profiles extracted from model fields and occultations from the COSMIC constellation of radio occultation instruments is shown. Results confirm the high data quality and robustness, where GRAS shows lower bending angle noise against ECMWF than COSMIC and in terms of occultations per day, one GRAS ≈ two COSMIC satellites. This is partly due to the operational setup of EPS. For the investigation we focus on two observation periods where updates in the ECMWF (March 2009) and COSMIC processing (October 2009) have improved the statistics further. Bending angles biases agree to within 0.5% against ECMWF and to within 0.1% against COSMIC after the updates for altitudes between 8 and 40 km. In addition, we also analyze the impact of the Metop orbit processing on the derived GRAS bending angle data, where different GPS and Metop orbit solutions are analyzed. Results show that a batch based orbit processing would improve in particular the bending angle bias behavior at higher altitudes. Requirements for the operational processing of GRAS data are briefly outlined, options to ease the use of other positioning system satellites in the near future are discussed. A simplified analysis on the observation of several of these systems, e.g. GPS and Galileo, from one platform shows that about 16% of occultations are found within 300 km, ±3 h, thus providing similar information. A constellation of 2 GRAS like instruments would have only about 10% close-by.  相似文献   

17.
Global Navigation Satellite System (GNSS) radio occultation (RO) is an innovative meteorological remote sensing technique for measuring atmospheric parameters such as refractivity, temperature, water vapour and pressure for the improvement of numerical weather prediction (NWP) and global climate monitoring (GCM). GNSS RO has many unique characteristics including global coverage, long-term stability of observations, as well as high accuracy and high vertical resolution of the derived atmospheric profiles. One of the main error sources in GNSS RO observations that significantly affect the accuracy of the derived atmospheric parameters in the stratosphere is the ionospheric error. In order to mitigate the effect of this error, the linear ionospheric correction approach for dual-frequency GNSS RO observations is commonly used. However, the residual ionospheric errors (RIEs) can be still significant, especially when large ionospheric disturbances occur and prevail such as during the periods of active space weather. In this study, the RIEs were investigated under different local time, propagation direction and solar activity conditions and their effects on RO bending angles are characterised using end-to-end simulations. A three-step simulation study was designed to investigate the characteristics of the RIEs through comparing the bending angles with and without the effects of the RIEs. This research forms an important step forward in improving the accuracy of the atmospheric profiles derived from the GNSS RO technique.  相似文献   

18.
The Global Navigation Satellite System (GNSS) has been a very powerful and important contributor to all scientific questions related to precise positioning on Earth’s surface, particularly as a mature technique in geodesy and geosciences. With the development of GNSS as a satellite microwave (L-band) technique, more and wider applications and new potentials are explored and utilized. The versatile and available GNSS signals can image the Earth’s surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. The refracted signals from GNSS radio occultation satellites together with ground GNSS observations can provide the high-resolution tropospheric water vapor, temperature and pressure, tropopause parameters and ionospheric total electron content (TEC) and electron density profile as well. The GNSS reflected signals from the ocean and land surface could determine the ocean height, wind speed and wind direction of ocean surface, soil moisture, ice and snow thickness. In this paper, GNSS remote sensing applications in the atmosphere, oceans, land and hydrology are presented as well as new objectives and results discussed.  相似文献   

19.
GNSS (Global Navigation Satellite System) radio occultation mission for remote sensing of the Earth’s atmosphere will be performed by GNOS (GNSS Occultation Sounder) instrument on China FengYun-3 (FY3) 02 series satellites, the first of which FY3-C will be launched in the year 2013. This paper describes the FY3 GNOS mission and presents some results of measurement simulation. The key designed specifications of GNOS are also shown. The main objective of simulation is to provide scientific support for GNOS occultation mission on the FY3-C satellites. We used EGOPS software to simulate occultation measurements according to GNOS designed parameters. We analyzed the accuracy of retrieval profiles based on two typical occultation events occurring in China South–East area among total simulated events. Comparisons between the retrieval atmospheric profiles and background profiles show that GNOS occultation has high accuracy in the troposphere and lower stratosphere. The sensitivities of refractivity to three types of instrumental error, i.e. Doppler biases, clock stability and local multipath, were analyzed. The results indicated that the Doppler biases introduced by along-ray velocity error and GNOS clock error were the primary error sources for FY3-C occultation mission.  相似文献   

20.
The tropopause is an important boundary in the Earth’s atmosphere, and has been the subject of close attention from atmosphere and climate researchers. To monitor the global tropopause using radio occultation (RO) data, there are two primary methods, one is the widely used temperature lapse rate method, and the other is the bending angle covariance transform method which is unique to RO data. We use FengYun3-C (FY3C) and Meteorological Operational Satellite Program (MetOp) RO data and European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data to determine differences in RO tropopause height calculated by these two methods. We compute biases of the RO lapse rate tropopause height (LRTH) and the RO bending angle tropopause height (BATH) relative to the ECMWF LRTH. The dependences of the tropopause height biases on tropopause height (TPH) retrieval method, latitude, season and RO mission are investigated. The results indicate that BATH show a consistent 0.8–1.2 km positive bias over the tropics and high latitude regions compared with LRTH, however, over 25° to 40° latitude in both hemisphere, BATH results are less stable. Furthermore, the mean bias between BATH and LRTH displayed a different symmetrical characteristic from 2017.12 to 2018.2 (DJF) compared to 2018.6–2018.8 (JJA). However, except for some bias over Antarctica, the mean value of both LRTH and BATH show a similar tropopause variation, indicating the consistency of both methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号