首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Electron density distribution is the major determining parameter of the ionosphere. Computerized Ionospheric Tomography (CIT) is a method to reconstruct ionospheric electron density image by computing Total Electron Content (TEC) values from the recorded Global Positioning Satellite System (GPS) signals. Due to the multi-scale variability of the ionosphere and inherent biases and errors in the computation of TEC, CIT constitutes an underdetermined ill-posed inverse problem. In this study, a novel Singular Value Decomposition (SVD) based CIT reconstruction technique is proposed for the imaging of electron density in both space (latitude, longitude, altitude) and time. The underlying model is obtained from International Reference Ionosphere (IRI) and the necessary measurements are obtained from earth based and satellite based GPS recordings. Based on the IRI-2007 model, a basis is formed by SVD for the required location and the time of interest. Selecting the first few basis vectors corresponding to the most significant singular values, the 3-D CIT is formulated as a weighted least squares estimation problem of the basis coefficients. By providing significant regularization to the tomographic inversion problem with limited projections, the proposed technique provides robust and reliable 3-D reconstructions of ionospheric electron density.  相似文献   

2.
针对电容层析成像技术(ECT)逆问题中软场效应的影响,以及重建图像时使用的传统迭代类算法迭代次数多、成像速度慢等问题,将双共轭梯度(BICG)应用到电容层析成像技术中,为了得到更好的重建效果,提出了双共轭梯度与正则化思想相结合来求解逆问题的最佳解。通过COMSOL5.3软件进行建模,使用MATLAB 2014a进行图像重建与图像评估,分别使用Tikhonov、Landweber、共轭梯度(CG)、BICG、所提改进算法进行图像重建。实验表明:所提改进算法的成像效果不仅优于其他迭代类算法,而且大大缩短了图像重建需要的时间;尤其对一些复杂流型成像效果更佳,图像错误率低至约0.2,相关系数高达约0.88,成像时间缩短至2.77 s,迭代次数减少至20次。   相似文献   

3.
Precise positioning based on Global Navigation Satellite System (GNSS) technique requires high accuracy ionospheric total electron content (TEC) correction models to account for the ionospheric path delay errors. We present an adjusted Spherical Harmonics Adding KrigING method (SHAKING) approach for regional ionospheric vertical TEC (VTEC) modeling in real time. In the proposed SHAKING method, the VTEC information over the sparse observation data area is extrapolated by the Adjusted Spherical Harmonic (ASH) function, and the boundary distortion in regional VTEC modeling is corrected by the stochastic VTEC estimated using Kriging interpolation. Using real-time GPS, GLONASS and BDS-2/3 data streams of the Crust Movement Observation Network of China (CMONOC), the SHAKING-based regional ionospheric VTEC maps are re-constructed over China and its boundary regions. Compared to GNSS VTECs derived from the independent stations, the quality of SHAKING solution improves by 13–31% and 6–33% with respect to the ASH-only solution during high and low geomagnetic periods, respectively. Compared to the inverse distance weighting (IDW) generated result, significant quality improved of SHAKING-based VTEC maps is also observed, especially over the edge areas with an improvement of 60–80%. Overall, the proposed SHAKING method exhibits notable advantage over the existing regional VTEC modeling techniques, which can be used for regional TEC modeling and associated high-precision positioning applications.  相似文献   

4.
针对中国区域连续运行参考站接收机野值会干扰星基增强系统(SBAS)电离层异常事件提取的问题,提出了一种基于电离层垂直延迟时间梯度的野值检测方法。首先,介绍了电离层延迟数据的提取方法;然后,论述了依据野值和电离层异常的不同时空相关特性进行野值检测的方法,并用单双频定位误差结果验证了野值检测的正确性;最后,对检测结果进行了分析。结果表明:该方法可有效区分野值和电离层异常;在中国大陆构造环境监测网络200多个参考站中,野值检测所剔除的参考站数目在3~10个,对电离层穿透点空间分布的影响在可接受范围内。   相似文献   

5.
By using the data of GNSS (Global Navigation Satellite System) observation from Crustal Movement Observation Network of China (CMONOC), ionospheric electron density (IED) distributions reconstructed by using computerized ionospheric tomography (CIT) technique are used to investigate the ionospheric storm effects over Wuhan region during 17 March and 22 June 2015 geomagnetic storm periods. F-region critical frequency (foF2) at Wuhan ionosonde station shows an obvious decrease during recovery phase of the St. Patrick’s Day geomagnetic storm. Moreover, tomographic results present that the decrease in electron density begins at 12:00 UT on 17 March during the storm main phase. Also, foF2 shows a long-lasting negative storm effect during the recovery phase of the 22 June 2015 geomagnetic storm. Electron density chromatography presents the evident decrease during the storm day in accordance with the ionosonde observation. These ionospheric negative storm effects are probably associated with changes of chemical composition, PPEF and DDEF from high latitudes.  相似文献   

6.
In the gravimetric approach to determine the Moho depth an isostatic hypothesis can be used. The Vening Meinesz–Moritz isostatic hypothesis is the recent theory for such a purpose. Here, this theory is further developed so that the satellite gravity gradiometry (SGG) data are used for recovering the Moho depth through a nonlinear integral inversion procedure. The kernels of its forward and inverse problems show that the inversion should be done in a larger area by 5° than the desired one to reduce the effect of the spatial truncation error of the integral formula. Our numerical study shows that the effect of this error on the recovered Moho depths can reach 6 km in Persia and it is very significant. The iterative Tikhonov regularization in a combination with either generalized cross validation or quasi-optimal criterion of estimating the regularization parameter seems to be suitable and the solution is semi-convergent up to the third iteration. Also the Moho depth recovered from the simulated SGG data will be more or less the same as that obtained from the terrestrial gravimetric data with a root mean square error of 2 km and they are statistically consistent.  相似文献   

7.
微小卫星在科学研究、交通导航、自然灾害预报、城市规划、环境监测、国防安全等领域应用潜力巨大.然而,作为常用于微小卫星系统的液化气推进装置,其推进剂存在气化不完全问题,导致推进性能下降.为了有效控制气化过程,研究了基于电容层析成像(ECT)技术的液化推进剂气化过程可视化和气相含率检测方法.为了提高测量信噪比和降低加工难度,设计了一个6电极柔性PCB传感器.针对6电极成像质量较差问题,在线性反投影(LBP)和Tikhonov正则化的基础上,提出了像素插值法,建立了灰度值 相含率映射模型.仿真结果表明,应用像素插值后,重建图像平均相对误差降低了7.72%,图像质量显著提高,相含率测量误差显著减低(不大于4.86%).最后,基于微小卫星推进剂气化的实际情况设计了模拟实验装置,证明了所设计的柔性PCB传感器和所提出算法及映射模型的可行性.  相似文献   

8.
针对纹理图像的去噪问题,通过分析全变分(TV)去噪模型与方向全变分(DTV)去噪模型,提出了一种具有鲁棒性的基于的DTV去噪模型。为了刻画图像中的不同结构特征,该模型中DTV正则项的指数p由图像的结构来确定在(0,2)中自适应地选取。由于该模型是含有可分性算子的非光滑优化问题,可用交替方向乘子法(ADMM)求解,并能保证算法的收敛性。数值实验结果表明:与其他经典模型相比,提出的模型取得了更高的峰值信噪比和结构相似度,在去除噪声的同时能有效保持图像的细节信息。   相似文献   

9.
针对如何利用GNSS(Global Navigation Satellite System)数据进行电离层扰动监测的问题,提出了一种基于GNSS数据表征全球电离层扰动的方法.利用大约400个GNSS地面站点的观测数据,计算总电子含量(Total Electron Content,TEC)变化率的标准差——ROTI(Ra...  相似文献   

10.
本文介绍卫星电视信号特性和电高层闪烁的观测结果。结果说明在民用卫星TV接收机上配接口电路接收卫星电视信号能作c频段电离层闪烁研究。   相似文献   

11.
随着电离层探测技术的不断发展,电离层观测资料也越来越多,只使用单一的观测资料会出现电离层反演精度不高的问题。为了提高电离层的反演精度,使用BP神经网络技术将地基反演和国际参考电离层(international reference ionosphere,IRI)模型的垂直总电子含量(vertical total electron content,VTEC)数据进行有效融合。在温带地区\[35°(N)~45°(N),60°(E)~80°(E)\]进行电离层反演试验,结果表明基于BP神经网络技术的电离层数据融合和地基反演获得的电离层VTEC精度都比较高,但是基于BP神经网络的电离层数据融合反演精度比地基反演更高,所以基于BP神经网络技术的数据融合能够提高电离层的反演精度。  相似文献   

12.
WAAS系统中电离层折射校正的新方法及计算结果   总被引:2,自引:0,他引:2  
黄智  袁洪 《空间科学学报》2008,28(2):132-136
电离层介质的色散性是影响电磁波信号进行卫星导航定位精度的重要因素之一.配合北斗二代分系绩研制任务,提出了一种新的电离层折射校正算法,并利用2000年7月1日到3日的双频GPS观测数据对6个用户站进行试算,进一步将试算所得均方根误差和电离层网格算法得到的误差进行比较.结果表明,对于中纬区域的用户站,估算的TEC误差约为0.5 m左右;而低纬用户误差相对增大,为1 m左右.文中给出的算法与电离层网格模型所提供的精度相差不多,在未来中国自主的卫星增强系统中采用新方法进行电离层进行修正是可行的及有效的.   相似文献   

13.
研究了WAAS卫星导航系统的格网电离层改正方法,分析了中国区域电离层分布特性,根据中国区域内稀疏布站的条件,MEO卫星和GEO卫星运动特点,以及C波段GEO卫星电离层延迟特性,提出了利用距离幂指数权重内插进行电离层延迟改正的方法。使用IGS公布的电离层数据,分别利用格网电离层权重方法和距离幂指数权重内插法进行Matlab仿真计算。然后,将结果与IGS事后精密产品进行比较,证明在中国区域内稀疏布站条件下,距离幂指数权重内插法对于电离层延迟具有较理想的改正效果。  相似文献   

14.
A technique for retrieving vertical distributions (profiles) of atmospheric gas constituents from data of passive remote sensing of the atmosphere is proposed. The goal of the technique based on the statistical (Bayesian) approach to solution of inverse problems is construction of probability distribution for a sought quantity throughout the interval of the studied heights. It is assumed that initial data contain measurement noise, and a priori information about properties of the profile is used. It is proposed to approximate the sought profile by a function in the form of an artificial neural network. This approximation allows optimal inclusion of a priori information into retrieval procedure, thus ensuring the most effective regularization of the problem. Efficiency of the proposed technique is demonstrated on an example of retrieval of vertical ozone profile from data of ground-based sounding of the atmosphere in the millimeter wavelength range. Results of profile retrieval from model data and from spectra of radiation temperature of the atmosphere measured in the Apatity (67° N, 33° E) in the winter of 2002–2003 are presented.  相似文献   

15.
There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations.  相似文献   

16.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   

17.
传统天基测向初定轨的不足,主要是由于观测数据存在系统误差和观测方程组的系数矩阵病态或不可逆。文章建立观测方程的半参数回归模型,提出基于补偿最小二乘估计和岭估计的广义正则化最小二乘估计,推导了估计公式,并证明了相关统计性质。引入选主列Givens-QR分解算法,提高观测方程求解效率和数值计算稳定性。仿真结果表明:该方法应用于天基测向初定轨可行,可以提高定轨精度和解算成功率。  相似文献   

18.
A technique for studying ionospheric wavelike phenomena, primarily AGW/TID events, is developed based on the solution of the problem of radio wave propagation in ionospheric plasma disturbed by wavelike processes. A perfectly reflecting surface model is used for representing TIDs propagating at ionospheric heights. This technique is a generalization of the Frequency-and-Angular Sounding (FAS) method developed earlier for oblique TID diagnostics using transmitters of opportunity. Trial measurements were made in November 2003 with two DPS-4 systems at Millstone Hill Observatory, providing experimental validation of the developed method by comparing the results of disturbance diagnostics to those simultaneously obtained with the original (oblique) FAS method. The TID parameters recovered during the November 2003 campaign suggest that the observed disturbances predominately propagated equatorward which likely indicates their sources to be in the auroral region. The equatorward propagating AGW/TIDs are typical for disturbed geomagnetic conditions which were observed during the campaign. Implementation of the generalized FAS technique in the DPS sounder allowed development of a dedicated data acquisition system for ionospheric disturbance diagnostics. Routine measurements with the developed technique using the existing world-wide network of Digisondes (GIRO) will make it possible to conduct large-scale studies of the AGW/TID phenomena.  相似文献   

19.
利用宇宙噪声是均匀的。各向同性的背景电磁辐射的假设,对电子密度涨落空间分布波数谱为负幂律函数的电离层不规则结构,用射线光学方法导出了闪烁功率谱的表示式。与射电星和轨道人造卫星信标的电离层闪烁相比,减少了因相对运动弓队的变量。用数值计算方法研究了电离层不规则结构的结构参量Ly、ly、p、η对功率谱的影响。与实测资料比较,发现电离层吸收事件期间且Riometer记录的闪烁资料中,60%以上相应的不规则结构有Ly>103,η>η0(0.2<η0<0.5).   相似文献   

20.
提出了基于IGRF模型的Galileo广播Nequick模型及其参数拟合算法, 解决了Galileo信号仿真中地理场景映射与地磁坐标下的电离层延时修正参数拟合问题. 应用IGRF模型, 可计算出任意给定位置和时间点的地磁参数以及E层、 F1层、F2层的电子密度, 从而计算出Galileo电离层修正参数. 仿真结果表明, 该算法拟合的全球电离层延时与IGS提供的实际观测值基本一致, 仿真精度高于一般的经验电离层模型, 实现了Galileo卫星信号的电离层延时修正参数的精确仿真.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号