首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to obtain deformation parameters in each block of Sichuan-Yunnan Region (SYG) in China by stages and establish a dynamic model about the variation of the strain rate fields and the surface expansion in this area, we taken the Global Positioning System (GPS) sites velocity in the region as constrained condition and taken advantage of the block strain calculation model based on spherical surface. We also analyzed the deformation of the active blocks in the whole SYG before and after the Wenchuan earthquake, and analyzed the deformation of active blocks near the epicenter of the Wenchuan earthquake in detail. The results show that, (1) Under the effects of the carving from India plate and the crimping from the potential energy of Tibetan Plateau for a long time, there is a certain periodicity in crustal deformation in SYG. And the period change and the earthquake occurrence have a good agreement. (2) The differences in GPS velocity fields relative Eurasian reference frame shows that the Wenchuan earthquake and the Ya'an earthquake mainly affect the crustal movement in the central and southern part of SYG, and the average velocity difference is about 4–8?mm/a for the Wenchuan earthquake and 2–4?mm/a for the Ya'an earthquake. (3) For the Wenchuan earthquake, the average strain changed from 10 to 20 nanostrian/a before earthquake to 40–50 nanostrian/a after the earthquake, but before and after the Ya’an earthquake, the strain value increased from about 15 nanostrian/a to about 30 nanostrian/a. (4) The Wenchuan earthquake has changed the strain parameter of each active block more or less. Especially, the Longmen block and Chengdu block near the epicenter. The research provides fundamental material for the study of the dynamic mechanism of the push extrusion from the north-east of the India plate and the crimp from Qinghai Tibet Plateau, and it also provides support for the study of crustal stress variation and earthquake prediction in Sichuan Yunnan region.  相似文献   

2.
On April 20, 2013, an earthquake of M7.0 occurred in Lushan, Sichuan province, China. This paper investigates the coseismic ionospheric anomalies using GPS (Global Positioning System) data from 23 reference stations in Sichuan province that are a part of the Crustal Movement Observation Network of China (CMONOC). The recorded results show that a clear ionospheric anomaly occurred within 15 min after the earthquake near the epicenter, and the occurrence time of the anomalies recorded by various stations is related to the distance from the epicenter. The maximum anomaly is 0.25 TECu, with a 2 min duration and the distance of the recording station to the epicenter is 83 km. Acoustic waves generated by the crustal vertical movement during the earthquake propagate up to the height of the ionosphere lead to the ionospheric anomaly, and the propagation speed of the acoustic wave is calculated as 0.72 ± 0.04 km/s based on the propagation time and propagation distance, consistent with the average speed of sound waves within a 0–450 km atmospheric height.  相似文献   

3.
On December 11, 1967 at 05:21 LT, an immense earthquake of magnitude 6.7 struck Koyna, the Indian province of Maharashtra. Its epicenter was located at geographic latitude 17.37°N and longitude 73.75°E with depth of about 3 km. Ground based measurements show variation in the critical frequency of ionospheric F2 layer (foF2) before and after the shock. In the present study the behavior of F2-region of ionosphere has been examined over the equatorial and low latitudinal region ionosphere during the month of December 1967 around the time of Koyna earthquake. For this purpose, the ionospheric data collected with the help of ground-based ionosondes installed at Hyderabad (located close to the earthquake epicenter) Ahmedabad, Trichirapulli, Kodaikanal and Trivendrum have been utilized. The upper and lower bound of Interquartile range (IRQ) are constructed to monitor the variations in foF2 other than day-to-day and diurnal pattern for finding the seismo-ionospheric precursors. Some anomalous electron density variations are observed between post midnight hours to local pre-noon hours at each station. These anomalies are strongly time dependent and appeared a couple of days before the main shock. The period considered in this study comes under the quiet geomagnetic conditions. Hence, the observed anomalies (which are more than the usual day-to-day variability) over all stations are likely to be associated with this imminent earthquake. The possible mechanism to explain these anomalies is the effect of seismogenic electric field generated just above the surface of earth within the earthquake preparation zone well before the earthquake due to emission of radioactive particles and then propagated upward, which perturbs the F-region ionosphere.  相似文献   

4.
High spatial resolution measurements of interseismic deformation along major faults are critical for understanding the earthquake cycle and for assessing earthquake hazard. We propose a new remove/filter/restore technique to optimally combine GPS and InSAR data to measure interseismic crustal deformation, considering the spacing of GPS stations in California and the characteristics of interseismic signal and noise using InSAR. To constrain the longer wavelengths (>40 km) we use GPS measurements, combined with a dislocation model, and for the shorter wavelength information we rely on InSAR measurements. Expanding the standard techniques, which use a planar ramp to remove long wavelength error, we use a Gaussian filter technique. Our method has the advantage of increasing the signal-to-noise ratio, controlling the variance of atmosphere error, and being isotropic. Our theoretical analysis indicates this technique can improve the signal-to-noise ratio by up to 20%. We test this method along three segments of the San Andreas Fault (Southern section near Salton Sea, Creeping section near Parkfield and Mojave/Big Bend section near Los Angeles), and find improvements of 26%, 11% and 8% in these areas, respectively. Our data shows a zone of uplift to the west of the Creeping section of the San Andreas Fault and an area of subsidence near the city of Lancaster. This work suggests that after only 5 years of data collection, ALOS interferograms will provide a major improvement in measuring details of interseismic deformation.  相似文献   

5.
The present study reports the analysis of GPS based TEC for our station Surat (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region in India at times close to some earthquake events (M ? 5) during the year 2009 in India and its neighbouring regions. The TEC data used in the study are obtained from GPS Ionospheric Scintillation and TEC Monitoring (GISTM) system. The TEC data has been analysed corresponding to 11 earthquakes in low solar activity period and quiet geomagnetic condition. We found that, out of 11 cases of earthquakes (M > 5) there were seven cases in which enhancement in TEC occurred on earthquake day and in other four cases there was depletion in TEC on earthquake day. The variation in refractivity prior to earthquake was significant for the cases in which the epicentre lied within a distance of 600 km from the receiving station. By looking into the features on temporal enhancement and depletion of TEC a prediction was made 3–2 days prior to an earthquake (on 28 October 2009 in Bhuj – India). The paper includes a brief discussion on the method of potentially identifying an impending earthquake from ionospheric data.  相似文献   

6.
Results of a statistical variation of total ion density observed in the vicinity of epicenters as well as around magnetically conjugated points of earthquakes are presented in this paper. Two data sets are used: the ion density measured by DEMETER during about 6.5?years and the list of strong earthquakes (MW?≥?4.8) occurring globally during this period (14,764 earthquakes in total). First of all, ionospheric perturbations with 23–120?s observation time corresponding to spatial scales of 160–840?km are automatically detected by a software (64,287 anomalies in total). Second, it is checked if a perturbation could be associated either with the epicenter of an earthquake or with its magnetically conjugated point (distance?<?1500?km and time?<?15?days before the earthquake). The index Kp?<?3 is also considered in order to reduce the effect of the geomagnetic activity on the ionosphere during this period. The results show that it is possible to detect variations of the ionospheric parameters above the epicenter areas as well as above their conjugated points. About one third of the earthquakes are detected with ionospheric influence on both sides of the Earth. There is a trend showing that the perturbation length increases as the magnitude of the detected EQs but it is more obvious for large magnitude. The probability that a perturbation appears is higher on the day of the earthquake and then gradually decreases when the time before the earthquake increases. The spatial distribution of perturbations shows that the probability of perturbations appearing southeast of the epicenter before an earthquake is a little bit higher and that there is an obvious trend because perturbations appear west of the conjugated point of an earthquake.  相似文献   

7.
A powerful earthquake of Mw = 7.7 struck the Saravan region (28.107° N, 62.053° E) in Iran on 16 April 2013. Up to now nomination of an automated anomaly detection method in a non linear time series of earthquake precursor has been an attractive and challenging task. Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) have revealed strong potentials in accurate time series prediction. This paper presents the first study of an integration of ANN and PSO method in the research of earthquake precursors to detect the unusual variations of the thermal and total electron content (TEC) seismo-ionospheric anomalies induced by the strong earthquake of Saravan. In this study, to overcome the stagnation in local minimum during the ANN training, PSO as an optimization method is used instead of traditional algorithms for training the ANN method. The proposed hybrid method detected a considerable number of anomalies 4 and 8 days preceding the earthquake. Since, in this case study, ionospheric TEC anomalies induced by seismic activity is confused with background fluctuations due to solar activity, a multi-resolution time series processing technique based on wavelet transform has been applied on TEC signal variations. In view of the fact that the accordance in the final results deduced from some robust methods is a convincing indication for the efficiency of the method, therefore the detected thermal and TEC anomalies using the ANN + PSO method were compared to the results with regard to the observed anomalies by implementing the mean, median, Wavelet, Kalman filter, Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Machine (SVM) and Genetic Algorithm (GA) methods. The results indicate that the ANN + PSO method is quite promising and deserves serious attention as a new tool for thermal and TEC seismo anomalies detection.  相似文献   

8.
Precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes (M > 6.5) are extensively investigated toward the earthquake prediction. Upward tornado type seismic clouds occurred near the epicenter associated with strong LF-VLF radio noises from lightning discharges in the evening of January 9, 1995 [Yamada, T., Oike, K. On the increase of electromagnetic noises before and after the 1995 Hyogo-Ken Nanbu earthquake. In: Hayakawa M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. TERRAPUB, Tokyo, pp. 417–427, 1999] and anomalous foEs increases up to 10 MHz were detected at Shigaraki, 90 km of the epicenter and at Kokubunji, 500 km east of the epicenter [Ondoh, T. Anomalous sporadic-E layers observed before M7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model. Adv. Polar Upper Atmos. Res. 17, 96–108, 2003; Ondoh, T. Anomalous sporadic-E ionization before a great earthquake, Adv. Space Research 34, 1830–1835, 2004] associated with strong ELF noises from lightning discharges in the daytime on January 15, 1995 [Hata, M., Fujii, T., Takumi, I. EM precursor of large-scale earthquakes in Japan, in: Abstracts of International Workshop on Seismo Electromagnetics (IWSE 2005), Univ. Electro-Communications, Chofu, Tokyo, Japan, March 15–17, pp. 182–186, 2005] before the M7.2 Hyogoken–Nanbu earthquake of January 17, 1995. The anomalous foEs increases occurred at epicentral distances within 500 km that are the same as those of the terrestrial gas emanations along active faults before large earthquakes [King, C.-Y. Gas geochemistry applied to earthquake prediction: An overview. J. Geophys. Res. 91(B12), 12269–12281, 1986]. The anomalous foEs increases seem to be a seismic precursor because geomagnetic and solar conditions were very quiet all day on January 15,1995 and the normal foEs in Japanese winter is below 6 MHz. No significant pre-seismic geomagnetic field variation was detected at epicentral distance of 100 km before this earthquake [Ondoh, T., Hayakawa, M. Anomalous occurrence of sporadic-E layers before the Hyogoken–Nanbu earthquake, M7.2 of January 17, 1995. In: Hayakawa, M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, pp. 629–639, 1999; Ondoh, T., Hayakawa, M. Seismo discharge model of anomalous sporadic E ionization before great earthquakes. In: Hayakawa, M., O.A. Molchanov, (Eds.), Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Couplings, TERRAPUB, Tokyo, pp. 385–390, 2002; Ondoh. T., Hayakawa, M. Synthetic study of precursory phenomena of the M7.2 Hyogo-ken Nanbu earthquake. Phys. Chem. Earth 31, 378–388, 2006]. The foF2 decrease and h’F increase occurred before the M7.8 Hokkaido Nansei-Oki earthquake of July 12,1993 in a geomagnetic quiet period [Ondoh, T. Ionospheric disturbances associated with great earthquake of Hokkaido southwest coast, Japan of July 12, 1993. Phys. Earth Planet. Interiors. 105, 261–269, 1998; Ondoh, T. Seismo ionospheric phenomena. Adv. Space Res. 26, 8, 1267–1272, 2000]. Characteristic phase changes at terminator times of Omega 10.2 kHz waves passing 70 km of the epicenter extended toward darker local times by 1 h for 3 days before this earthquake due to lowering of the wave reflection height or ion density increases in the D region [Hayakawa, M., Molchanov, O. A., Ondoh, T., Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Commun. Res. La., 43, 00. 169–180, 1996]. The radon concentration in the atmosphere over Ashiya fault, Kobe [Yasuoka, Y., Shinogi, M. Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys. 72(5), 759–761, 1997] and in the groundwater at 17 m well in Nishinomiya, Japan [Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaki, S., Sasaki, Y., Takahashi, M., Sano, Y. Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269, 60–61, 1995] had gradually increased since 2 months before the M7.2 earthquake, increased suddenly in December 1994, and rapidly returned to the normal low level of October, 1994 [Yasuoka, Y., Shinogi, M. 1997. Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe. Japan, earthquake. Health Phys. 72(5), 759–761.]. Radon concentration changes in the groundwater before the M 7.0 Izu-Oshima-kinkai earthquake, Japan on January 14, 1978 [Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M., Asada, T. 1980. Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 207, 882–883] and the M6.8 Chengkung earthquake, Taiwan on December 10, 2003 [Kuo, T., Fan, K., Chen, W., Kuochen, H., Han, Y., Wang, C., Chang, T., Lee, Y. Radon anomaly at the Antung Hot Spring before the Taiwan M6.8 Chengkung earthquake. Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30–February 1, 2006, SGP-TR-179, 2006] are also investigated to find common features of the groundwater radon concentration changes before large earthquakes (M > 6.5) in comparison with those before the M7.2 Hyogoken–Nanbu earthquake. Groundwater radon concentrations before the 3 large earthquakes had shown common characteristic changes of gradually initial ones from the normal level since about 2 months before the earthquake onsets, rapid decreases down to the minimum, and quick increases up to the maximum at 7–20 days before the earthquake onsets, respectively. These are very useful characteristics of pre-seismic radon anomaly for the earthquake prediction or warning. Promising observations toward the earthquake prediction are also discussed.  相似文献   

9.
One of various mechanisms of pre-earthquake lithosphere–atmosphere–ionosphere coupling as possible explanation of the seismo-ionospheric effects is connected with the release of latent heat. Abnormal variations of ionospheric electromagnetic parameters possibly related to the 2007 Ms 6.4 Pu’er earthquake in China were reported. This paper attempts to examine whether there were abnormal changes of surface latent heat flux (SLHF) linked with this pre-earthquake ionospheric disturbances. The spatio-temporal statistical analyzes of multi-years SLHF data from USA NCEP/NCAR Reanalysis Project reveal that local SLHF enhancements appeared 11, 10 and 7 days before the Pu’er earthquake, respectively. As contrasted to the formerly reported local ionospheric Ne enhancement 9 days before the shock observed by DEMETER satellite, it is discovered that the SLHF and Ne anomalies are quasi-synchronous and have good spatial correspondence with the epicentre and the local active faults. This is valuable for understanding the seismogenic coupling processes and for recognizing earthquake anomaly with multiple parameters from integrated Earth observation system.  相似文献   

10.
Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.  相似文献   

11.
The present paper describes the variations of the GPS total electron content (TEC) from the International GNSS service network and surface latent heat flux (SLHF) from the Scientific Computing Division of the National Center for Atmospheric Research (NCAR) before the 11 March 2011 M9.0 Sendai earthquake, respectively. The analysis shows pronounced enhancements in the GPS TEC and SLHF a few days prior to the earthquake event. The maximum increase in the GPS TEC was about 30 TECu with an extended spatial distribution on a geomagnetically quiet day (Dst ? −20 nT, between two moderate geomagnetic storms), 8 March, 3 days prior to the earthquake. This giant positive disturbance was possibly associated with the impending disastrous earthquake and contributed from the enhanced solar radiation. Moreover, there were several anomalous regions of SLHF on the global map, but an area of enhanced SLHF very close to the epicenter. The purpose of this paper is to report the existence of the changes in surface and ionosphere, and show the potential application of multi-source data to identify seismic precursors.  相似文献   

12.
A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry. To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm yr−1 and a weighted root-mean-square difference of 2.7 mm yr−1. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(1) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive. One of our stations, Malè, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels.  相似文献   

13.
The study of GNSS vertical coordinate time series forecasting is helpful for monitoring the crustal plate movement, dam or bridge deformation monitoring, and global or regional coordinate system maintenance. The eXtreme Gradient Boosting (XGBoost) algorithm is a machine learning algorithm that can evaluate features, and it has a great potential and stability for long-span time series forecasting. This study proposes a multi-model combined forecasting method based on the XGBoost algorithm. The method constitutes a new time series as features through the fitting and forecasting results of the forecasting model. The XGBoost model is then used for forecasting. In addition, this method can obtain higher precision forecasting results through circulation. To verify the performance of the forecasting method, 1095 epochs of data in the Up coordinate of 16 GNSS stations are selected for the forecasting test. Compared with the CNN-LSTM model, the experimental results of our forecasting method show that the mean absolute error (MAE) values are reduced by 30.23 %~52.50 % and the root mean square error (RMSE) values are reduced by 31.92 %~54.33 %. The forecasting results have higher accuracy and are highly correlated to the original time series, which can better forecast the vertical movement of the GNSS stations. Therefore, the forecasting method can be applied to the up component of the GNSS coordinate time series.  相似文献   

14.
A study of the critical frequency foF2 variations after the large earthquake (Ms = 8.1) which occurred on 29 September, 2009 in the region of Samoa Islands in the Pacific Ocean is carried out using data of the ionospheric station of Kwajalein. The epicenter of the earthquake was located at about 184 km southwest from Apia (the capital of West Samoa). It was found that wave-like perturbations of foF2 were observed for ∼3 h above the station (located approximately 3560 km northwest from the epicenter). The amplitude of the disturbance was as large as ∼20% of the average magnetic quiet day foF2 values. A comparison of the observed perturbations of foF2 with the ones detected at Stanford ionospheric station after the Alaska earthquake of 28 March 1964 (Ms = 8.4) showed a close similarity of the wave-like perturbations of foF2 in both cases.  相似文献   

15.
There are extensive reports of ionospheric disturbances before the great 2008 Wenchuan earthquake, which are possibly explained by seismogenic electric field hypotheses linked with the aerosols injected in atmosphere. This paper attempts to investigate the possible change of atmospheric aerosol optical depth (AOD) associated with this earthquake by using MODIS data from both Terra and Aqua satellites. The result shows a clear enhancement of AOD along the Longmenshan faults 7 days before the quake, which is 1 day and 4 days earlier than the reported negative and positive ionospheric disturbances, respectively, and is 1 day earlier than or quasi-synchronism with other reported atmospheric anomalies including air temperature, outgoing longwave radiation and relative humidity. Particularly, the spatial distribution of AOD enhancement is very local and it is correlated well with the active faults and surface ruptures. We suggest that this unique enhancement could be associated with the Lithosphere–Atmosphere–Ionosphere coupling process during the preparation of the Wenchuan earthquake.  相似文献   

16.
The ionospheric anomalies observed before any notable earthquake have become the subject of predictive research in the field of seismo-ionospheric coupling and/or Solid Earth-Atmosphere. In this paper, the concept of ionospheric modeling has been applied using total electronic content (TEC); derived from dual-frequency GPS recordings from about sixty permanent geodetic stations. The study and the analysis of the anomalous TEC variations, quantifiable on a regional scale, allowed us to detect the principal precursors of the Mw 5.5 earthquake that hit Oran on June 06th, 2008. The envisaged analytical approach is based principally on the time delays estimation relating to the seismic responses from the triggering (lithospheric seismic source) until their recording in data Rinex (GPS_IGS stations) through the reflection system of the electromagnetic waves on the ionospheric level (F2-layer).Indeed, in term of location, the longitude-latitude coordinates of the Oran event epicenter (0.658°W, 35.883°N) affecting the coastal margin of Western Algeria without too much material damage. Although the magnitude of this earthquake is qualified moderate (Mw 5.5, seismic intensity scale V-VI), one can observe apparent disturbances in the terrestrial electromagnetic spectrum associated with ionospheric TEC variations. In the domain of geodetic data analysis, we have noted a significant increase in the ionospheric TEC, which announces the arrival of a seismic precursor several days before the main studied event. Against this background, we emphasize that any seismic event, of significant magnitude, often carries information associated with other variants involved in the package of earthquake studied. Among these variants we evoke the effect of the magnetic field and the effect of the surrounding environment, etc. As for the specific behavior of the GPS_TEC signal, obtained from the Rinex data, and its interaction with the associated seismic activity, we highlight the existence of a spectral conformity between the geomagnetic field and that of the TEC content (spontaneous polarization of the TEC).Finally, we have just confirmed the effectiveness of this forecasting approach which relates the seismo-ionospheric precursors that are embedded in the physical trace of the electromagnetic signal relative to significant and/or moderate earthquakes (M ≥ 5); such as the envisaged case of the 2008 Oran event.  相似文献   

17.
首都圈GPS地形变监测网的布设与观测   总被引:2,自引:0,他引:2  
系统地介绍了首都圈GPS地形变监测网布设的科学思路和原则,该网的基本情况,以及为提高观测精度而采取的重大技术措施。这个GPS监测网是全国规模最大、精度最高的监测网,现已完成布设和观测,预期精度将优于5×10-8将在地震监测预报中发挥重要的作用。  相似文献   

18.
There is now a body of evidence to indicate that coupling occurs between the lithosphere–atmosphere–ionosphere prior to earthquake events. Nevertheless the physics of these phenomena and the possibilities of their use as part of an earthquake early warning system remain poorly understood. Proposed here is a programme to create a much greater understanding in this area through the deployment of a dedicated space asset along with coordinated ground stations, modelling and the creation of a highly accessible database. The space element would comprise 2 co-orbiting spacecraft (TwinSat) involving a microsatellite and a nanosatellite, each including a suite of science instruments appropriate to this study. Over a mission duration of 3 years ∼ 400 earthquakes in the range 6–6.9 on the Richter scale would be ‘observed’. Such a programme is a prerequisite for an effective earthquake early warning system.  相似文献   

19.
A precise determination of ionospheric total electron content (TEC) anomaly variations that are likely associated with large earthquakes as observed by global positioning system (GPS) requires the elimination of the ionospheric effect from irregular solar electromagnetic radiation. In particular, revealing the seismo-ionospheric anomalies when earthquakes occurred during periods of high solar activity is of utmost importance. To overcome this constraint, a multiresolution time series processing technique based on wavelet transform applicable to global ionosphere map (GIM) TEC data was used to remove the nonlinear effect from solar radiation for the earthquake that struck Tohoku, Japan, on 11 March, 2011. As a result, it was found that the extracted TEC have a good correlation with the measured solar extreme ultraviolet flux in 26–34 nm (EUV26–34) and the 10.7 cm solar radio flux (F10.7). After removing the influence of solar radiation origin in GIM TEC, the analysis results show that the TEC around the forthcoming epicenter and its conjugate were significantly enhanced in the afternoon period of 8 March 2011, 3 days before the earthquake. The spatial distributions of the TEC anomalous and extreme enhancements indicate that the earthquake preparation process had brought with a TEC anomaly area of size approximately 1650 and 5700 km in the latitudinal and longitudinal directions, respectively.  相似文献   

20.
On October 6, 2008, an Mw 6.3 earthquake occurred in Dangxiong county, southern Tibetan Plateau. In this study, Synthetic Aperture Radar (SAR) images from Envisat ASAR C-band descending Track 176 and ALOS PALSAR L-band ascending Track 500 are processed to generate the coseismic deformation caused by the earthquake. To estimate the source model, a downhill simplex non-linear inversion method is used to determine the fault rupture geometry, and an automatic fault discretization technique is employed to divide the fault plane to construct the optimal slip model, in which the uncertainties of the fault parameters are assessed by a Monte Carlo method. The inversion results show that the earthquake strikes almost south–north and has a normal faulting focal mechanism with rake angle and slip of −111.7° and 1.33 m, respectively. Peak slip of 2.15 m is located at a depth of 7.5 km. The estimated geodetic moment is 4.06 × 1018 N m (Mw 6.37), 71.2% of which is released in the depth range 4.5–11 km. The slip model suggests that coseismic slip also takes place at some fault patches near the earth’s surface and postseismic afterslip occurs below the coseismic rupture area after the earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号