首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 31 毫秒
1.
太阳微波爆发动态频谱仪   总被引:1,自引:1,他引:1  
介绍了北京天文台已投入观测的1.0—20GHz,2.6—3.8GHz太阳射电频谱仪及1999年投入观测的5.2—76GHz太阳射电频谱仪。它们是第23周太阳活动峰年我国太阳物理界的重要观测设备已投入观测的频谱仪获得不同类型的太阳射电爆发资料分别为171个和146个,这些事件在时间和频率上有丰富的幅度和结构的变化。不同太阳射电爆发反映太阳大气不同高度上耀斑的时间和空间的演化过程,为研究不同大气高度中耀斑物理动力学过程、能量释放、粒子加速提供了更多的依据。  相似文献   

2.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

3.
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds >400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies >1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 ± 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU.  相似文献   

4.
Noise in wireless systems from solar radio bursts   总被引:1,自引:0,他引:1  
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f  1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems.  相似文献   

5.
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.  相似文献   

6.
A complex radio event was observed on January 17, 2005 with the radio-spectrograph ARTEMIS-IV, operating at Thermopylae, Greece; it was associated with an X3.8 SXR flare and two fast Halo CMEs in close succession. We present dynamic spectra of this event; the high time resolution (1/100 s) of the data in the 450–270 MHz range, makes possible the detection and analysis of the fine structure which this major radio event exhibits. The fine structure was found to match, almost, the comprehensive Ondrejov Catalogue which it refers to the spectral range 0.8–2 GHz, yet seems to produce similar fine structure with the metric range.  相似文献   

7.
太阳是一个异常活跃的天体,其爆发过程会对地球周围空间环境产生重要影响. 通常,单个高能质子即足以引起飞行器中微电子器件出现异常,因此太阳质子事件预报是空间天气预报的重要内容. 关于预报模型的参数选择尚有值得改进之处. 研究认为,Ⅰ型噪暴与日冕加热磁重联具有密切关系,可以作为预报参数. 通过两个典型太阳爆发事件的详细资料分析,说明了Ⅰ型噪暴与质子事件及CME的相关性.  相似文献   

8.
This work presents the analysis of five fine structures in the solar radio emission, observed between June 2000 and October 2001 by the Brazilian Solar Spectroscope (BSS), in the decimeter frequency band of 950–2500 MHz. Based on their morphological characteristics identified in the dynamic spectra, the fine structures had been classified as type U-like or type J-like bursts. Such emissions are variants of the type III bursts. They support the hypothesis of generation by plasma emission mechanism, from interaction of electron beams accelerated during solar flares, propagating along closed magnetic structures, within the trapped plasma of the solar corona. The spectral and temporal characteristics of the five fine structures had been obtained from the dynamic spectra and the parameters of the agent and the emitting source have been determined, assuming both fundamental and harmonic emissions. The analysis revealed the flux density of the structures is less than 20–80 s.f.u. For assumption of harmonic emission, the interval of values for the source parameters estimated are: the loop size is (0.3–5.1) × 1010 cm; the electron beam velocity is in the range of 0.16–0.53 c; the temperature of coronal loop top is of the order of (0.25–1.55) × 107 K; and the low limit for the magnetic field is of 7–26 G. These results are in agreement with previous determinations reported in the literature.  相似文献   

9.
Problems connected with mechanisms for comet brightness outbursts as well as for gamma-ray bursts remain open. Meantime, calculations show that irradiation of a certain class of comet nuclei, having high specific electric resistance, by intense fluxes of energetic protons and positively charged ions with kinetic energies more than 1 MeV/nucleon, ejected from the Sun during strong solar flares, can produce a macroscopic high-voltage electric double layer with positive charge in the subsurface zone of the nucleus, during irradiation times of the order of 10–100 h at heliocentric distances around 1–10 AU. The maximum electric energy accumulated in such layer will be restricted by the electric discharge potential of the layer material. For comet nuclei with typical radii of the order of 1–10 km the accumulated energy of such natural electric capacitor is comparable to the energy of large comet outbursts that are estimated on the basis of ground based optical observations. The impulse gamma and X-ray radiation together with optical burst from the comet nucleus during solar flares, anticipated due to high-voltage electric discharge, may serve as an indicator of realization of the processes above considered. Multi-wavelength observations of comets and pseudo-asteroids of cometary origin, having brightness correlation with solar activity, using ground based optical telescopes as well as space gamma and X-ray observatories, during strong solar flares, are very interesting for the physics of comets as well as for high energy astrophysics.  相似文献   

10.
The international reference ionosphere, IRI, and its extension to plasmasphere, IRI-Plas, models require reliable prediction of solar and ionospheric proxy indices of solar activity for nowcasting and forecasting of the ionosphere parameters. It is shown that IRI prediction errors could increase for the F2 layer critical frequency foF2 and the peak height hmF2 due to erroneous predictions of the ionospheric global IG index and the international sunspot number SSN1 index on which IRI and IRI-Plas models are built. Regression relation is introduced to produce daily SSN1 proxy index from new time series SSN2 index provided from June 2015, after recalibration of sunspots data. To avoid extra errors of the ionosphere model a new solar activity prediction (SAP) model for the ascending part of the solar cycle SC25 is proposed which expresses analytically the SSN1 proxy index and the 10.7-cm radio flux F10.7 index in terms of the phase of the solar cycle, Φ. SAP model is based on monthly indices observed during the descending part of SC24 complemented with forecast of time and amplitude for SC25 peak. The strength of SC25 is predicted to be less than that of SC24 as shown with their amplitudes for eight types of indices driving IRI-Plas model.  相似文献   

11.
Relativistic neutrons were observed by the neutron monitors at Mt. Chacaltaya and Mexico City and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in association with an X17.0 flare on 2005 September 7. The neutron signal continued for more than 20 min with high statistical significance. Intense emissions of γ-rays were also registered by INTEGRAL, and during the decay phase by RHESSI. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. [Hua, X.-M., Kozlovsky, B., Lingenfelter, R.E. et al. Angular and energy-dependent neutron emission from solar flare magnetic loops, Astrophys. J. Suppl. Ser. 140, 563–579, 2002], and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch-angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the γ-ray line emission and that ions were continuously accelerated at the emission site.  相似文献   

12.
The analysis of observations of very high frequency radio noise intensity at the middle latitude on a frequency f = 500 MHz from 14th till 26th of October, 2003 is presented. These data are compared with the solar radio bursts in the range of frequencies 1–14 MHz registered by RAD2 receiver of the WAVES device installed on board the WIND spacecraft.  相似文献   

13.
This work studies the sudden increases in total electron content of the ionosphere caused by the very intense solar flare on July 14, 2000. Total electron content (TEC) data observed from a Global Positioning System (GPS) network are used to calculate the flare-induced TEC increment, δTECf, and variation rate, dTECf/dt. It is found that both dTECf/dt and δTECf are closely related with the solar zenith angles. To explain the observation results, we derived a simple relationship between the partial derivative of the flare-induced TEC, ∂TECf/∂t, which is a good approximation for dTECf/dt, and the solar zenith angle χ, as well as the effective flare radiation flux If, according to the well-known Chapman theory of ionization. The derived formula predicted that ∂TECf/∂t is proportional to If and inverse proportional to Chapman function ch(χ). This theoretical prediction not only explains the correlation of dTECf/dt and δTECf with χ as shown in our TEC observation, but also gives a way to deduce If from TEC observation of GPS network. Thus, the present work shows that GPS observation is a powerful tool in the observation and investigation of solar flare effects on the ionosphere, i.e., the sudden ionospheric disturbances, which is a significant phenomenon of space weather.  相似文献   

14.
The protection of astronauts and instrumentation from galactic cosmic rays and solar particle events is one of the primary constraints associated with mission planning in low earth orbit or deep space. To help satisfy this constraint, several computational tools have been developed to analyze the effectiveness of various shielding materials and structures exposed to space radiation. These tools are now being carefully scrutinized through a systematic effort of verification, validation, and uncertainty quantification. In this benchmark study, the deterministic transport code HZETRN is compared to the Monte Carlo transport codes HETC-HEDS and FLUKA for a 30 g/cm2 water target protected by a 20 g/cm2 aluminum shield exposed to a parameterization of the February 1956 solar particle event. Neutron and proton fluences as well as dose and dose equivalent are compared at various depths in the water target. The regions of agreement and disagreement between the three codes are quantified and discussed, and recommendations for future work are given.  相似文献   

15.
The analysis of satellite solar power station (SSPS) is carried out for some specified locations (Delhi, Mumbai, Kolkata and Bengaluru) in India and consequently the performance of the system is evaluated for geostationary earth orbit (GEO) based SSPS, low earth orbit (LEO) based SSPS and Molniya (quasi geostationary) orbit based SSPS for sites located at different latitudes. The analysis of power; received energy over a year and weight of the rectenna array for the same beam intensity showed varied results for Molniya orbit based SSPS, LEO based SSPS and GEO based SSPS. The power delivered by the LEO SSPS was highest which indicated that this SSPS may be efficient for the short term power requirement. However, it is observed from the results of the energy received over a year that the GEO based system is suitable for base load power plant as it is capable of delivering constant energy through out a year. Further, the weight of the rectenna and hence the space required for ground station for same power output is smallest for Molniya orbit based system for a range of rectenna array radius considered. It is thus envisaged that the Molniya orbit based system would be a better choice for commercial use of SSPS. These findings may help for judicious selection of satellite orbit and ground station location for placing the satellite for SSPS for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号