首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
We study the propagation of energetic particles, accelerated by interplanetary shock waves, upstream of the shock. By using the appropriate propagator, we show that in the case of superdiffusive transport, the time profile of particles accelerated at a traveling planar shock is a power-law with slope 0<γ<10<γ<1, at variance with the exponential profile obtained for normal diffusion. By analyzing data sets of interplanetary shocks in the solar wind observed by the Ulysses and the Voyager 2 spacecraft, we find that the time profiles of energetic electrons correspond to power-laws, with slopes γ?0.30–0.98γ?0.300.98, implying a mean square displacement 〈Δx2〉∝tαΔx2tα, with α=2-γ>1α=2-γ>1, i.e., superdiffusion. In addition, the propagation of ions is also superdiffusive, with α=1.07–1.13α=1.071.13.  相似文献   

5.
A simple semi-empirical model to determine the maximum electron concentration in the ionosphere (NmF2NmF2) for South American locations is used to calculate NmF2NmF2 for a northern hemisphere station in the same longitude sector. NmF2NmF2 is determined as the sum of two terms, one related to photochemical and diffusive processes and the other one to transport mechanisms. The model gives diurnal variations of NmF2NmF2 representative for winter, summer and equinox conditions, during intervals of high and low solar activity. Model NmF2NmF2 results are compared with ionosonde observations made at Toluca-México (19.3°N; 260°E). Differences between model results and observations are similar to those corresponding to comparisons with South American observations. It seems that further improvement of the model could be made by refining the latitude dependencies of coefficients used for the transport term.  相似文献   

6.
7.
Dynamics of the magnetotail involves elementary processes of magnetic field merging (reconnection layer formation) occurring on medium spatial scales. Every such process features two different stages, a fast one and a subsequent slower one. The corresponding short time scale T1T1 is associated with disturbances propagating in the tail lobes. The longer time scale T2T2 is associated with plasma motions in the plasma sheet. A disturbance appearing in the magnetotail on the time scale T1T1 results in a loss of equilibrium in the plasma sheet. By means of theoretical argument and numerical simulation, it is shown that the relaxation process which follows on the time scale T2T2, produces extremely thin embedded current sheets, along with generation of fast plasma flows. The process provides an effective mechanism for transformation of magnetic energy accumulated in the magnetotail, into energy of plasma flows. The fast flows may drive turbulent motions on shorter spatial scales. In their turn, those motions can locally produce very thin current sheets; after that, nonlinear tearing process leads to generation of neutral lines, and reconnection. The latter produces new fast disturbances on the time scale T1T1 closing the feedback loop.  相似文献   

8.
Assume a constellation of satellites is flying near a given nominal trajectory around L4L4 or L5L5 in the Earth–Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4L4 or L5L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth–Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.  相似文献   

9.
With the development of lunar exploration, a lunar global positioning system (LGPS) is demanded for both on-ground and in-flight lunar exploration missions. The traditional configuration of constellation requires at least eighteen satellites to cover the whole lunar surface continuously. In this paper, the configurations of the libration point orbits (LPOs) constellations are investigated. By using the constellations on the Earth–Moon L1L1 and L2L2 LPOs, the basic functions of the LGPS can be realized by using eight to fourteen satellites. First, the LPO and the combinations of LPOs, which can be used in the constellations of the LGPS, are investigated. The criteria and procedures of the configuration design are introduced. Second, the configurations of LPOs constellations are investigated in the Earth–Moon circular-restricted three-body problem (CR3BP). The size of the LPOs and the distribution of the satellites on these LPOs are determined by using an exhaustive algorithm and a global optimization method, respectively. The key performance parameters of these constellations are computed. Third, the constellations with good performance in the CR3BP are redesigned in the more accurate Earth–Moon based Sun-perturbed bicircular four-body problem (B4BP). Moreover, in order to avoid the ground coverage problem caused by the perturbation of the Sun, some modifications are implemented, and the configuration of the no blind area LGPS in the B4BP is obtained.  相似文献   

10.
This paper provides a useful new method to determine minimum and maximum range of values for the degree and order of the geopotential coefficients required for simulations of orbits of satellites around the Earth. The method consists in a time integration of the perturbing acceleration coming from each harmonic of the geopotential during a time interval T. More precisely, this integral represents the total velocity contribution of a specific harmonic during the period T  . Therefore, for a pre-fixed minimum contribution, for instance 1×10-81×10-8 m/s during the period of time T, any harmonic whose contribution is below this value can, safely, be neglected. This fact includes some constraints in the degree and order of the terms which are present in the geopotential formula, saving computational efforts compared to the integration of the full model. The advantage of this method is the consideration of other perturbations in the dynamics (we consider the perturbations of the Sun, the Moon, and the direct solar radiation pressure with eclipses), since these forces affect the value of the perturbation of the geopotential, because these perturbations depend on the trajectory of the spacecraft, that is dependent on the dynamical model used. In this paper, we work with quasi-circular orbits and we present several simulations showing the bounds for the maximum degree and order (M) that should be used in the geopotential for different situations, e. g., for a satellite near 500 km of altitude (like the GRACE satellites at the beginning of their mission) we found 35?M?19835?M?198 for T=1T=1 day. We analyzed the individual contribution of the second order harmonic (J2J2) and we use its behavior as a parameter to determine the lower limit of the number of terms of the geopotential model. In order to test the accuracy of our truncated model, we calculate the mean squared error between this truncated model and the “full” model, using the CBERS (China-Brazil Earth Resources Satellite) satellite in this test.  相似文献   

11.
We present medium resolution near-infrared host galaxy spectra of low redshift quasars, PG 0844+3490844+349 (z = 0.064), PG 1226+0231226+023 (z = 0.158), and PG 1426+0151426+015 (z = 0.086). The observations were done by using the Infrared Camera and Spectrograph (IRCS) at the Subaru 8.2 m telescope. The full width at half maximum of the point spread function was about 0.3 arcsec by operations of an adaptive optics system, which can effectively resolve the quasar spectra from the host galaxy spectra. We spent up to several hours per target and developed data reduction methods to reduce the systematic noises of the telluric emissions and absorptions. From the obtained spectra, we identified absorption features of Mg I (1.503 μm), Si I (1.589 μm) and CO (6-3) (1.619 μm), and measured the velocity dispersions of PG 0844+3490844+349 to be 132 ± 110 km s−1 and PG 1426+0151426+015 to be 264 ± 215 km s−1. By using an MBH–σMBHσ relation of elliptical galaxies, we derived the black hole (BH) mass of PG 0844+3490844+349, log(MBH/M)=7.7±5.5log(MBH/M)=7.7±5.5 and PG 1426+015,log(MBH/M)=9.0±7.51426+015,log(MBH/M)=9.0±7.5. These values are consistent with the BH mass values from broad emission lines with an assumption of a virial factor of 5.5.  相似文献   

12.
13.
14.
15.
16.
Using the bulge data from AGN image decomposition with ground-based observations, we calculate the ratios of the central supermassive black hole mass(SMBH) to the Bulge mass (Mbh/MbulgeMbh/Mbulge) in a sample of X-ray selected AGNs, including 15 Narrow-line Seyfert 1 galaxies (NLS1s) and 18 broad-line Seyfert 1 galaxies (BLS1s). We found that the mean value of log(Mbh/Mbulge)log(Mbh/Mbulge) is -3.81±0.11-3.81±0.11 for 15 NLS1s, and -2.91±0.13-2.91±0.13 for 18 BLS1s, showing the lower Mbh/MbulgeMbh/Mbulge in NLS1s relative to BLS1s. The calculation shows that the Bulge mass from the host image decomposition in NLS1s is statistically smaller than that from Hubble-type correction method, and a linear mass relation is suggested for NLS1s and a nonlinear mass relation for BLS1s. The studying of host galaxies with ground-based observations strongly limited by the atmospheric seeing. We need to do the decomposition of host images for NLS1s with Hubble Space Telescope observation in the future.  相似文献   

17.
18.
Radiative and collisional constants of excited atoms contain the matrix elements of the dipole transitions and when they are blocked one can expect occurring a number of interesting phenomena in radiation-collisional kinetics. In recent astrophysical studies of IR emission spectra it was revealed a gap in the radiation emitted by Rydberg atoms (RA  ) with values of the principal quantum number of n≈10n10. Under the presence of external electric fields a rearrangement of RA emission spectra is possible to associate with manifestations of the Stark effect. The threshold for electric field ionization of RA   is E≈3·104E3·104 V/cm for states with n>10n>10. This means that the emission of RA   with n≥10n10 is effectively blocked for such fields. In the region of lower electric field intensities the double Stark resonance (or Förster resonance) becomes a key player. On this basis it is established the fact that the static magnetic or electric fields may strongly affect the radiative constants of optical transitions in the vicinity of the Föster resonance resulting, for instance, in an order of magnitude reduction of the intensity in some lines. Then, it is shown in this work that in the atmospheres of celestial objects lifetimes of comparatively long-lived RA states and intensities of corresponding radiative transitions can be associated with the effects of dynamic chaos via collisional ionization. The Föster resonance allows us to manipulate the random walk of the Rydberg electron (RE) in the manifold of quantum levels and hence change the excitation energies of RA, which lead to anomalies in the IR spectra.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号