首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used the technique of expansion in Empirical Orthogonal Functions (EOFs) to develop regional models of the critical frequencies of E and F2 layers (foE, foF2), peak height (hmF2), and semi-thickness of F2 layer (YmF2) over Pakistan. In the present study levels of solar activity specified by Smoothed Sunspot Number (R) from 10 to 200 are taken into account. The magnetic dip angle for the model ranges from 30° to 60°. We have compared the regional model and the International Reference Ionosphere (IRI) with measurements of three ionosondes in Pakistan. The model parameters foE and foF2 are found overall comparable to the observed hourly median values during daytime at Karachi (geographic latitude = 24.95°N, longitude = 67.13°E, magnetic inclination = 37°), Multan (30.18°N, 71.48°E, 45°) and Islamabad (33.75°N, 73.13°E, 51.5°) during the years 1988, 1996 and 2000. For hmF2 the computed values by regional and IRI model for the year 1995 are found close to each other. However, for YmF2the results are better during daytime as compared to nighttime.  相似文献   

2.
Accuracy of IRI electron density profile depends on the F2 layer peak density and height converted by empirical formulae from the critical frequency and M3000F2 factor provided by the ITU-R (former CCIR). The CCIR/ITU-R maps generated from ground-based ionosonde measurements suffer from model assumptions, in particular, over the oceans where relatively few measurements are available due to a scarcity of ground-based ionosondes. In the present study a grid-point calibration of IRI/ITU-R maps for the foF2 and hmF2 over the oceans is proposed using modeling results based on the topside true-height profiles provided by ISIS1, ISIS2, IK-19 and Cosmos-1809 satellites for the period of 1969–1987. Topside soundings results are compared with IRI and the Russian standard model of ionosphere, SMI, and grouped to provide an empirical calibration coefficient to the peak density and height generated from ITU-R maps. The grid-point calibration coefficients maps are produced in terms of the solar activity, geodetic latitude and longitude, universal time and season allowing update of IRI–ITU-R predictions of the F2 layer peak parameters.  相似文献   

3.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   

4.
The variability of the F2-layer even during magnetically quiet times are fairly complex owing to the effects of plasma transport. The vertical E × B drift velocities (estimated from simplified electron density continuity equation) were used to investigate the seasonal effects of the vertical ion drifts on the bottomside daytime ionospheric parameters over an equatorial latitude in West Africa, Ibadan, Nigeria (Geographic: 7.4°N, 3.9°E, dip angle: 6°S) using 1 year of ionsonde data during International Geophysical Year (IGY) of 1958, that correspond to a period of high solar activity for quiet conditions. The variation patterns between the changes of the vertical ion drifts and the ionospheric F2-layer parameters, especially; foF2 and hmF2 are seen remarkable. On the other hand, we observed strong anti-correlation between vertical drift velocities and h′F in all the seasons. We found no clear trend between NmF2 and hmF2 variations. The yearly average value of upward daytime drift at 300 km altitude was a little less than the generally reported magnitude of 20 ms−1 for equatorial F-region in published literature, and the largest upward velocity was roughly 32 ms−1. Our results indicate that vertical plasma drifts; ionospheric F2-layer peak height, and the critical frequency of F2-layer appear to be somewhat interconnected.  相似文献   

5.
Multi-channel Global Positioning System (GPS) carrier phase signals, received by the six low Earth orbiting (LEO) satellites from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) program, were used to undertake active limb sounding of the Earth’s atmosphere and ionosphere via radio occultation. In the ionospheric radio occultation (IRO) data processing, the standard Shell inversion technique (SIT), transformed from the traditional Abel inversion technique (AIT), is widely used, and can retrieve good electron density profiles. In this paper, an alternative SIT method is proposed. The comparison between different inversion techniques will be discussed, taking advantage of the availability of COSMIC datasets. Moreover, the occultation results obtained from the SIT and alternative SIT at 500 km and 800 km, are compared with ionosonde measurements. The electron densities from the alternative SIT show excellent consistency to those from the SIT, with strong correlations over 0.996 and 0.999 at altitudes of 500 km and 800 km, respectively, and the peak electron densities (NmF2) from the alternative SIT are equivalent to the SIT, with 0.839 vs. 0.844, and 0.907 vs. 0.909 correlation coefficients when comparing to those by the ionosondes. These results show that: (1) the NmF2 and hmF2 retrieved from the SIT and alternative SIT are highly consistent, and in a good agreement with those measured by ionosondes, (2) no matter which inversion technique is used, the occultation results at the higher orbits (∼800 km) are better than those at the lower orbits (∼500 km).  相似文献   

6.
7.
The ionospheric characteristics of the F2 layer peak have been measured with ionosondes from the ground or with satellites from space. The most common characteristics are the F2-peak density NmF2 and peak height hmF2. In addition to these two parameters this paper studies the F2-peak scale height. Comparing the median values of hmF2 and NmF2 obtained from topside and bottomside sounding shows good agreement in general. The Chapman scale height values for the F2 layer peak derived from topside profiles, Hm,top, are generally several times larger than Hm,bot derived from bottomside profiles.  相似文献   

8.
Methods were suggested in /1,2,3/ to find the maximum electron density NmF (or NmF2) and the) corresponding height hmF (hmF2) in the ionosphere through a combination of measurements on two airglow lines: the UV oxygen line at λ135.6 nm and the red oxygen line near λ630 nm.  相似文献   

9.
Hourly values of NmF2 measured by 72 ionosondes near noon from 1957 to 2012 at low and middle geomagnetic latitudes of the northern geographic hemisphere are used to study the spring and autumn semi-annual anomalies in NmF2. The spring/summer, autumn/summer, spring/winter, and autumn/winter geomagnetically quiet NmF2 ratios, XM, XS, YM, and YS, respectively, taken near noon over each ionosonde for approximately the same winter, spring, summer, and autumn solar activity conditions are analyzed. The probabilities of occurrences of XM, XS, YM, and YS in intervals of change of these parameters, together with its most frequent and the mean expected values, and the probabilities to observe the F2-region spring and autumn semi-annual anomalies are calculated and studied for the first time for low, moderate, and high solar activity conditions. The geomagnetic latitude range between 10 and 55 degrees, where the ionosondes are located, is divided into 9 intervals of the same length of 5 degrees, the statistical parameters are averaged over each 5 degree interval, and the trends in these averaged statistical characteristics of the NmF2 spring and autumn semi-annual anomalies are calculated and studied for the first time. It is shown that the NmF2 equinoctial asymmetry can significantly affect the statistical parameters of the semi-annual anomaly in NmF2.  相似文献   

10.
In this paper we present the results of the comparison of the retrieved electron density profiles of the Ionospheric Radio Occultation (IRO) experiment on board CHAMP (CHAllenging Minisatellite Payload), with the ground ionosonde profiles for the Polar Regions. IRO retrieved electron density profiles from CHAMP are compared with Canadian Advanced Digital Ionosonde (CADI) measurements at two vertical sounding stations well within the Polar Cap, Eureka (geog. 80°13′ N; 86°11′ W) and Resolute Bay (geog. 74°41′ N; 94°54′ W). We compared the ionospheric parameters such as the peak electron density of the F-layer (NmF2) and the peak height of the F-layer (hmF2) for a 3-year period, 2004–2006. CHAMP derived NmF2 shows reasonable agreement with the ionosonde retrieved NmF2 for both the stations (0.76 and 0.71 correlation coefficient, for Eureka and Resolute Bay, respectively) whereas the hmF2 agreement is not that acceptable (0.25 and 0.37 correlation coefficient, respectively). The hmF2 from vertical sounding showed less spread than the CHAMP hmF2.  相似文献   

11.
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed.  相似文献   

12.
M(3000)F2 estimation of hmF2 based on four different formulated models viz: (1) Shimazaki (1955) (2) Bradley and Dudeney (1973), (3) Dudeney (1974) and (4) Bilitza et al. (1979) at an equatorial station in West Africa during low solar activity period (1995) are used to validate its conformity with observed and International Reference Ionosphere (IRI) model. Local time analyses of data from fifteen (15) selected days during the January and July solstices and April and October equinoxes are used. The results obtained show that the M(3000)F2 estimation of hmF2 from the ionosonde-measured values using the Ionospheric Prediction Service (IPS-42) sounder compared to the observed values which were deduced using an algorithm from scaled virtual heights of quiet day ionograms are highly correlated with Bilitza model. International Reference Ionosphere (IRI 2007) model for the equatorial region also agrees with the formulation developed by Bilitza et al. (1979) for the four different seasons of the year. hmF2 is highest (425 km) in summer (June solstice) season and lowest (386 km) in autumn (September equinox) season with daytimes peaks occurring at 11001200 LT during the solstices and at 1000 LT during the equinoxes respectively. Also, the post-sunset peaks are highest (362 km) at the spring (March equinox) and lowest (308 km) at the summer (June solstice) both occurring between 1800 and 2000 LT.  相似文献   

13.
A long temporal series of simulated ionograms was generated with a superimposed secular variation of −14 km/century on the hmF2 parameter. These ionograms were interpreted by the automatic scaling program Autoscala. By applying four different empirical formulas, four artificial series of hmF2 were generated and then processed with the same methods used by other authors for real data sets. Data analysis of the simulated ionograms revealed the artificially imposed long-term trend. These results lead to the conclusion, that regardless of the empirical formula used, the accuracy of hmF2 from ionosonde measurements would be adequate to observe a long-term trend of −14 km/century.  相似文献   

14.
Median values of ionosonde hF data acquired at Ibadan (Geographic:7.4°N, 3.9°E, Magnetic: dip 6°S, and magnetic declination, 3°W), Nigeria, West Africa, have been used to determine vertical ion drift (electric field) characteristics in the postsunset ionosphere in the African region during a time of high solar activity (average F10.7 −208). The database spans from January and December 1958 during the era of International Geophysical Year (IGY) for geomagnetic quiet conditions. Bimonthly averaged diurnal variations patterns are very similar, but differ significantly in magnitude and in the evening reversal times. Also, monthly variations of F-region vertical ion drift reversal times inferred from the time of hF maximum indicates early reversal during equinoxes and December solstice months except for the month of April. Late reversal is observed during the June solstice months. The equatorial evening prereversal enhancement in vertical ion drift (Vzp) occurs largely near 1900 LT with typical values 20–45 m/s. Comparison of Ibadan ionosonde Vzp with the values of prereversal peak velocity reported for Jicamarca (South America), Kodaikanal (India), and Scherliess and Fejer global model show considerable disparity. The changes of postsunset peak in virtual height of F-layer (hFP) with prereversal velocity peak Vzp are anti-correlated. Investigation of solar effects on monthly values of Vzp and hFP revealed that these parameters are independent of monthly averaged solar flux intensity during quiet-time sunspot maximum conditions.  相似文献   

15.
Hourly values of the F2-layer peak density, NmF2, measured by 95 ionosondes near noon from 1957 to 2011 at low and middle geomagnetic latitudes of the northern and southern geographic hemispheres are used in a statistical study of the NmF2 equinoctial asymmetry. The ratios, R, of NmF2 measured during 61 days around the March equinox to NmF2 measured during 61 days around the September equinox at the same UT near noon during geomagnetically quiet daytime conditions for approximately the same solar activity conditions over the same ionosonde are analyzed. The conditional probability of the occurrence of R in an interval of R, the most probable value of R, and the mean expected value of R are calculated for the first time for the low, moderate, and high solar activity levels to study variations in these statistical parameters with latitude and solar activity. These statistical parameters are averaged over 5° geomagnetic latitude interval in the northern and southern geographic hemispheres to calculate and to study for the first time trends in latitude and solar activity of these averaged NmF2 equinoctial asymmetry statistical characteristics.  相似文献   

16.
The monthly hourly medians of maximum electron density, NmF2, at two Pakistani ionospheric stations, Karachi and Islamabad, have been determined for solar minimum (1996) and solar maximum (2000) and compared with IRI predictions using the URSI coefficients. At night and pre-noon period the NmF2 values at both stations are almost equal during the 2 years. However, at post-noon the values at Karachi are considerably larger than those at Islamabad due to the equatorial or geomagnetic anomaly. Karachi (geomag. coord. 16.44°N, 139.08°E) lies near the region of the equatorial anomaly (+20 and −20 geomagnetic latitude), so most of the NmF2 values at Karachi are larger than those at Islamabad (geomag. coord. 24.46°N, 145.67°E). The maximum monthly values of NmF2 show a semi-annual variation at Karachi and Islamabad both during 1996 and 2000 as predicted by IRI.  相似文献   

17.
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1–6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.  相似文献   

18.
We present results for the global elastic parameters h2 and l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two satellites LAGEOS 1 and LAGEOS 2 observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analysed using different approaches. The analysis was done separately for the two satellites and approaches to estimate the two elastic parameters independently and together were performed. We do a sequential analysis and study the stability of the estimates as a function of length of the data set used. The adjusted final values for h2 equal to 0.6151 ± 0.0008 and 0.6152 ± 0.0008, and those for l2 equal to 0.0886 ± 0.0003 and 0.0881 ± 0.0003 for LAGEOS 1 and LAGEOS 2 tracking data are compared to other independently derived estimates. These parameters and their errors achieve stability at about the 24 and 27 month time interval for h2 and l2, respectively.  相似文献   

19.
The hourly measurements of M(3000)F2 (M(3000)F2meas) and the hourly quiet-time values of M(3000)F2 (M(3000)F2QT) relative to the ionospheric observatories of Poitiers, Lannion, Dourbes, Slough, Rome, Juliusruh, Kaliningrad, Uppsala, Lyckesele, Sodankyla, and Kiruna as well as the hourly time-weighted accumulation series derived from the geomagnetic planetary index ap (ap(τ)), were considered during the period January 1957–December 2003 and used for the development of 11 short-term forecasting local models (STFLM) of M(3000)F2.  相似文献   

20.
The shape of electron density profile in the International Reference Ionosphere could be improved significantly if the height hg and electron density Ng of the F region sub-peak inflexion point were entered in the set of the profile standard parameters. To study variations of these important parameters, the N(h) analysis of the statistically-summarized ionograms at the latitudes of 40–80°N of the Eastern hemisphere has been carried out for the two-hours intervals of local time, three seasons (winter, equinox and summer) and two levels of solar activities characterized by Covington indicesF10.7 = 100 and 200. It is shown that the parameters of the inflexion point can be expressed in most cases via the peak parameters of the F2 layer ashg= 0.8 hmF2 and Ng= 0.5 NmF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号