首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present multi frequency radio-continuum observations of Galactic SNR Vela Z (G266.2-1.2), associated with the prominent X-ray source RX J0852.0-4622 discovered in 1998. Our study of this Galactic supernova remnant (SNR) is based on low-resolution mosaic observations with the ATCA radio interferometer at 1384 and 2496 MHz, Parkes 4850 MHz and MOST 843 MHz survey data. We determine the radio spectral index for the most prominent features of this SNR and compare these features with X-ray observations. We note a sudden spectral turnover at higher then expected frequencies of ∼1384 MHz.  相似文献   

2.
We present examples of the quasi-periodic variations in the X-ray flux of Cyg X-3 which we have recently found during observations of this source with EXOSAT. Amplitudes and periods of the variations range from 5% to 20% of the total flux and from 50 to 1500 s, respectively. Our tentative interpretation of these quasi-periodicities, the occurrence of quasi-periodic phenomena in an accretion disk which partially occults the X-ray source, points towards an analogy of Cyg X-3 with certain ‘dipping’ low-mass X-ray binaries such as 4U 1822-37, as suggested /1/ previously. We point out, however, that there are also fundamental differences between Cyg X-3 and this type of low-mass X-ray binary.  相似文献   

3.
A small number of early Be stars exhibit X-ray luminosities intermediate between those typical of early type stars and those radiated by Be/X-ray binaries in the quiescent state. We report on XMM-Newton observations of two such Be stars, HD 161103 and SAO 49725 which were originally discovered in a systematic cross-correlation between the ROSAT all-sky survey and SIMBAD. The new observations confirm the X-ray luminosity detected by ROSAT (LX  1032 erg s−1) and the hardness of their X-ray spectra (thin thermal with kT  8–10 keV or power law with photon index of 1.7) which are both unusual for normal early type stars. We discuss the possible origin of this excess X-ray emission in the light of the models proposed for γ-Cas, magnetic disc-star interaction or accretion onto a compact companion object, neutron star or white dwarf, and compare the properties of these two sources with those of the new massive systems discovered in the XMM- Newton/SSC survey of the Galactic plane.  相似文献   

4.
The Hard X-ray Modulation Telescope (HXMT) is China's first X-ray (1-250 keV) astronomical satellite officially approved in 2011. It will scan the Galactic plane to detect new transient sources and do pointed observations of X-ray sources to study their spectra and multiwavelength temporal properties. Now the flight model of the satellite is in the final testing stage, and the expected launch date is in late 2016.   相似文献   

5.
在密近双星系统Her X-1/HZ Her中,Her X-1被HZ Her掩食时的X射线光度变化,为研究HZ Her的大气结构,提供了一个直接的观测证据。本文对这个系统的二次食变过程资料进行了拟合分析,推断了HZ Her的低层大气结构,面对X射线源一面的大气,由于X射线的加热作用,其低部存在着一层温度约为8×104K的色球层。与已有的HZ Her大气结构理论相比较,大致符合,但有一定差异。本文简单讨论了这种差异。   相似文献   

6.
We report the column density distribution of X-ray binaries in the Galactic Center region using the X-ray satellite ASCA, and demonstrate a new method to determine the mass distribution of the cold interstellar matter near the Galactic Center. The column densities of these X-ray sources are given by a simple function of the angular distance from the Galactic plane. Assuming a disk-like mass distribution of 300 pc radius, we estimate the total cold mass to be ∼7 × 107 M. We compare our results with the past results of other wavelength observations, and discuss physical conditions of the interstellar matter in the Galactic Center region.  相似文献   

7.
We observed the 5.2 h X-ray binary 4U2129+47 for more than one orbital cycle on 29 September and 4 October 1983 using the LE, ME and GSPC detectors of the ESA X-ray satellite EXOSAT. In neither detector an X-ray flux from the source could be detected. Quasi-simultaneous UBV observations using the 2.2 m telescop at the German-Spanish Astronomical Center, Calar Alto, failed to detect the large amplitude light curve reported in earlier observations but show the optical companion in a low intensity state. The large amplitude light curve has been interpreted as due to X-ray heating of the optical star by the X-ray source similar to the system Her X-1/HZ Her. Our optical observations indicate that the heating X-ray source has been shut off and nicely explain that EXOSAT failed to detect the source. 4U2129+47 seems to behave similar to Her X-1 in the optical quiescent state, seen for instance from 1949 to 1956.  相似文献   

8.
High Mass X-ray Binary Pulsars (HMXBP), in which the companion star is a source of supersonic stellar wind, provide a laboratory to probe the velocity and density profile of such winds. Here, we have measured the variation of the absorption column density along with other spectral parameters over the binary orbit for two HMXBP in elliptical orbits, as observed with the Rossi X-ray Timing Explorer (RXTE) and the BeppoSAX satellites. A spherically symmetric wind profile was used as a model to compare the observed column density variations. In 4U 1538-52, we find the model corroborating the observations; whereas in GX 301-2, the stellar wind appears to be very clumpy and a smooth symmetric wind model seems to be inadequate in explaining the variation in column density.  相似文献   

9.
Our work focuses on a comprehensive orbital phase-dependent spectroscopy of the four High Mass X-ray Binary Pulsars (HMXBPs) 4U 1538-52, GX 301-2, OAO 1657-415 and Vela X-1. We hereby report the measurements of the variation of the absorption column density and iron-line flux along with other spectral parameters over the binary orbit for the above-mentioned HMXBPs in elliptical orbits, as observed with the Rossi X-ray Timing Explorer (RXTE) and the BeppoSAX satellites. A spherically symmetric wind profile was used as a model to compare the observed column density variations. Out of the four pulsars, only in 4U 1538-52, we find the model having a reasonable corroboration with the observations, whereas in the remaining three the stellar wind seems to be clumpy and a smooth symmetric stellar wind model appears to be quite inadequate in explaining the data. Moreover, in GX 301-2, neither the presence of a disk nor a gas stream from the companion was validated. Furthermore, the spectral results obtained in the case of OAO 1657-415 and Vela X-1 were more or less similar to that of GX 301-2.  相似文献   

10.
Most, but not all, theoretical models of X-ray bursters require a binary system consisting of a mass donating star and a neutron star. The observational evidence in support of this model, however, is both indirect and meager. We have detected absorption dips in the X-ray spectrum of the Burster MXB 1916-05 with the IPC and the MPC on the Einstein Observatory which occur with a binary period of 2985 seconds. These dips are shown to be the result of a gas stream emanating from a companion star and hence this data represents the first direct evidence of the binary nature of X-ray bursters. Detailed models of the interaction of the gas stream with the accretion disk are presented. A 22nd mag. optical candidate for the system has been found.  相似文献   

11.
We present the first public database of high-energy observations of all known Galactic supernova remnants (SNRs). In Section 1 we introduce the rationale for this work motivated primarily by studying particle acceleration in SNRs, and which aims at bridging the already existing census of Galactic SNRs (primarily made at radio wavelengths) with the ever-growing but diverse observations of these objects at high-energies (in the X-ray and γγ-ray regimes). In Section 2 we show how users can browse the database using a dedicated web front–end (http://www.physics.umanitoba.ca/snr/SNRcat). In Section 3 we give some basic statistics about the records we have collected so far, which provides a summary of our current view of Galactic SNRs. Finally, in Section 4, we discuss some possible extensions of this work. We believe that this catalogue will be useful to both observers and theorists, and timely with the synergy in radio/high-energy SNR studies as well as the upcoming new high-energy missions. A feedback form provided on the website will allow users to provide comments or input, thus helping us keep the database up-to-date with the latest observations.  相似文献   

12.
The presence of compact X-ray sources in globular clusters allows diagnostic studies of both the X-ray sources themselves and the globular clusters to be carried out. A review of much of this work, primarily based on Einstein X-ray observations and supporting studies of globular clusters at radio through UV wavelengths, is presented. The compact X-ray sources in globular clusters are found to be compact binaries containing neutron stars and - in a separate lower luminosity component of an apparently bimodal luminosity function - possibly white dwarfs. Implications for the formation and evolution of compact binary X-ray sources in globular clusters and in the galactic bulge are discussed. In particular, new evidence is presented that the galactic bulge sources may be compact binaries in the remnants of disrupted globular clusters.  相似文献   

13.
Recent Chandra and XMM-Newton observations reported evidence of two X-ray filaments G359.88−0.08 (SgrA-E) and G359.54+0.18 (the ripple filament) near the Galactic center. The X-ray emission from these filaments has a nonthermal spectrum and coincides with synchrotron emitting radio sources. Here, we report the detection of a new X-ray feature coincident with a radio filament G359.90−0.06 (SgrA-F) and show more detailed VLA, Chandra and BIMA observations of the radio and X-ray filaments. In particular, we show that radio emission from the nonthermal filaments G359.90−0.06 (SgrA-F) and G359.54+0.18 (the ripple) has a steep spectrum whereas G359.88−0.08 (SgrA-E) has a flat spectrum. The X-ray emission from both these sources could be due to synchrotron radiation. However, given that the 20 km s−1 molecular cloud, with its intense 1.2 mm dust emission, lies in the vicinity of SgrA-F, it is possible that the X-rays could be produced by inverse Compton scattering of far-infrared photons from dust by the relativistic electrons responsible for the radio synchrotron emission. The production of X-ray emission from ICS allows an estimate of the magnetic field strength of 0.08 mG within the nonthermal filament. This should be an important parameter for any models of the Galactic center nonthermal filaments.  相似文献   

14.
MXB 0656-072 is an accreting X-ray pulsar with a Be star companion, showing notable emission in H. In October 2003 this system exhibited a large and extended X-ray outburst. RXTE observations during this outburst indicated a pulse period of 160.4 s and a cyclotron resonance scattering feature in the spectrum at 32 keV. This paper presents pulse profile analysis and phase-resolved X-ray spectroscopy of RXTE observations during this outburst.  相似文献   

15.
The anomalous X-ray pulsars (AXPs) represent a growing class of neutron stars discovered at X-ray energies. While the nature of their multi-wavelength emission mechanism is still under debate, evidence has been recently accumulating in favor of their magnetar nature. Their study in the optical and infrared (IR) wavelengths has recently opened a new window to constrain the proposed models. We here present a brief overview of AXPs and our Gemini-South observation of 1RXS J170849-400910, which is a relatively bright AXP discovered with ROSAT and later found to be an 11 s X-ray pulsar by ASCA. The observation was taken with the near-IR imager Flamingos in J (1.25 μm), H (1.65 μm), and Ks (2.15 μm). We confirm the recent detection by (ApJ, 589, L93–L96) of a source coincident with the CHANDRA source (candidate ‘A’). Our derived magnitudes of J = 20.6 (0.2), H = 18.6 (0.2), and Ks = 17.1 (0.2) are consistent with those derived by (ApJ, 589, L93–L96), and indicate that if this source is indeed the IR counterpart to 1RXS J170849-400910, then there is no evidence of variability from this AXP. However, given the lack of IR variability and the relatively high IR to X-ray flux of this source when compared to the other AXPs, we conclude that this source is unlikely the counterpart of the AXP, and that the other source (candidate ‘B’) within the CHANDRA error circle should not be ruled out as the counterpart. Further monitoring of these sources and a deep observation of this complex field are needed to confirm the nature of these sources and their association with the AXP.  相似文献   

16.
Changes in Eddington accretion ratios are thought to result in X-ray spectral index changes in Galactic binary black hole systems. Objects with higher Eddington ratios have softer X-ray spectra. Can we apply this result to much more massive black hole systems such as QSOs? If so, X-ray observations will give us valuable insight into the physics of QSOs. Among QSOs, X-ray spectral index is part of a large set of correlated optical and UV observational properties, especially optical Fe II and [O III] strengths in the Hβ region. To investigate whether this set of correlations is related to Eddington ratio, we use as probes, BALQSOs that have been suggested to be youthful super-accretors. We conducted infrared spectroscopy of the Hβ rest wavelength region for a sample of BALQSOs and compared line measurements with those for high and low redshift non-BAL QSOs. Hβ line widths and bolometric luminosity are used to calculate QSO black hole masses and Eddington ratios. Our results support the hypothesis that optical Fe II and [O III] line strengths are Eddington ratio indicators in QSO central engines. A possible explanation is that strong Fe II and weak [O III] indicate abundant cold gas that could fuel near Eddington accretion.  相似文献   

17.
We present six ROSAT PSPC observations of Seyfert 1 galaxies chosen to have low Galactic line-of-sight absorption (NH 1020 cm−2). As expected, it is found that all of these sources possess significantly steeper spectra below 1 keV, than that observed at higher X-ray energies. In addition we find evidence for soft X-ray spectral features, which are best parameterized as line emission at 0.63 keV in NGC7469 and 0.75 keV in ESO198-G24. We examine these results in the light of the accuracy of the PSPC spectral calibration.  相似文献   

18.
In the recent years, the discovery of a new class of Galactic transients with fast and bright flaring X-ray activity, the supergiant fast X-ray transients, has completely changed our view and comprehension of massive X-ray binaries. These objects display X-ray outbursts which are difficult to be explained in the framework of standard theories for the accretion of matter onto compact objects, and could represent a dominant population of X-ray binaries. I will review their main observational properties (neutron star magnetic field, orbital and spin period, long term behavior, duty cycle, quiescence and outburst emission), which pose serious problems to the main mechanisms recently proposed to explain their X-ray behavior. I will discuss both present results and future perspectives with the next generation of X-ray telescopes.  相似文献   

19.
On March 2003, IBIS, the γ-ray imager on board the INTEGRAL satellite, detected an outburst from a new source, IGR J17464-3213, that turned out to be an HEAO-1 transient, namely H1743-322. The spectral and temporal evolutions of the source were observed by INTEGRAL in different periods. Also RXTE observed the source for the first time on 2003 March 29 during a PCA Galactic bulge scan. The source flux decayed below the RXTE PCA sensitivity limit in November 2003, then in April 2004 it was again detected by INTEGRAL. On July 3, 2004 the source was again detected by RXTE/PCA at a 2–10 keV intensity of 16 mCrab and on July 7, reached 69 mCrab. Recently, a new outburst was observed on August 2005. We briefly summarise here the behaviour of the source observed by INTEGRAL from March 2003 to August 2005. The new outbursts of the source and the analysis of all the data collected (now public) give a global view of the spectral and time behaviour of this X-ray transient.  相似文献   

20.
Our current theoretical and observational understandings of the accretion disks around Galactic black-holes are reviewed. Historically, a simple phenomenological accretion disk model has been used to interpret X-ray observations. Although such a phenomenological interpretation is still useful, high quality X-ray data from contemporary instruments allow us to test more realistic accretion disk models. In a simple and ideal case, the standard optically thick accretion disk model is successful to explain observations, such that the inner disk radius is constant at three times the Schwarzschild radius over large luminosity variations. However, when disk luminosity is close to or exceeds the Eddington luminosity, the standard disk model breaks, and we have to consider the “slim disk” solution in which radial energy advection is dominant. Recent observations of Ultra-luminous X-ray sources (ULXs), which may not be explained by the standard disk model, strongly suggest the slim disk solution. We compare theoretical X-ray spectra from the slim disk with observed X-ray spectra of ULXs. We have found that the slim disk model is successful to explain ULX spectra, in terms of the massive stellar black-holes with several tens of solar mass and the super-Eddington mass accretion rates. In order to explain the large luminosities (>1040 ergs s−1) of ULXs, “intermediate black-holes” (>100M) are not required. Slim disks around massive stellar black-holes of up to several tens of solar mass would naturally explain the observed properties of ULXs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号