首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of the regular features of the high-, mid- and low-latitude ionosphere characteristics has been carried out using local empirical models. The local empirical models were derived from the manual scaled ionogram data recorded by DPS-4 Digisondes located at Norilsk (69 N, 88E), Irkutsk (52 N, 104E) and Hainan (19 N, 109E) for a 6-year period from December, 2002 to December, 2008. The technique used to build the local empirical model is described. Primary focuses are diurnal, seasonal and solar cycle variations of the peak electron density and the peak height under low solar activity and their changes with increasing solar activity. The main objective of the paper is to reveal both common and specific features of high-, mid- and low-latitude ionosphere. Based on earlier comparisons with the International Reference Ionosphere model, we analyze how the common and specific features are reproduced by this model.  相似文献   

2.
We used the TEC (Total electron content) data of 5 min resolution obtained from the Madrigal database during solar-maximum winter (Nov. 6, 2000–Feb. 4, 2001) to study statistically the polar ionospheric plasma distribution response to different intensity and orientation of IMF By/Bz components. The sunlit high-density plasma extension from dayside to nightside is favored in negative IMF By and Bz conditions. With the magnitude of the negative Bz increasing, the time range corresponding to the distinct high-density extension feature expands, and the plasma density along the extension path enhances, which can be attributed to the interaction between dayside solar-produced ionization whose poleward limit is decided by terminator and convection extent mainly modulated by IMF Bz component. As for IMF By component influence on the sunlit plasma extension, the combination effect of convection and corotation electric fields is necessary to be considered.  相似文献   

3.
The topside ionosphere parameters are studied based on the long-duration Irkutsk incoherent scatter radar (52.9N, 103.3E) measurements conducted in September 2005, June and December 2007. As a topside ionosphere parameter we chose the vertical scale height (VSH) related to the gradient of the electron density logarithm above the peak height. For morphological studies we used median electron density profiles. Besides the median behavior we also studied VSH disturbances (deviations from median values) during the magnetic storm of September 11th 2005. We compared the Irkutsk incoherent scatter radar data with the Millstone Hill and Arecibo incoherent scatter radar observations, the IRI-2007 prediction (using the two topside options) and VSH derived from the Irkutsk DPS-4 Digisonde bottomside measurements.  相似文献   

4.
This study aims to validate the electron density profiles from the FORMOSAT-3/COSMIC satellites with data from Digisondes in Brazil during the low solar activity period of the years 2006, 2007 and 2008. Data from three Brazilian Digisondes located in Cachoeira Paulista (22.7°S, 45°W), São Luís (2.5°S, 44.2°W) and Fortaleza (3.8°S, 38°W) were used in the comparisons. Only the profiles whose density peak have been obtained near the stations coordinates were chosen for the comparison. Although there is generally good agreement, some cases of discrepancies are observed. Some of these discrepancies cannot be explained simply by the differences in the position and local time of the measurements made by the satellite and the ground-based station. In such cases it is possible that local conditions, such as the presence of a trans-equatorial wind or electron density gradients, could contribute to the observed differences. Comparison of the F2 layer peak parameters, the NmF2 and hmF2, obtained from the two techniques showed that, in general, the agreement for NmF2 is pretty good and the NmF2 has a better correlation than hmF2. Cachoeira Paulista had the worst correlation for hmF2 possibly because this station is situated in the region under the influence of the equatorial ionization anomaly, a region where it is more difficult to apply the RO technique without violating the spherical symmetry condition.  相似文献   

5.
The diurnal, seasonal and latitudinal variations of the electron temperature in the Earth‘s topside ionosphere during relatively low solar activity period of 2005 – 2008 are investigated. In order to examine seasonal variations and morphology of the topside ionospheric plasma temperature, CNES micro-satellite DEMETER ISL data are used. Presented study is oriented on the dataset gathered in 2005 and 2008. Within conducted analysis, global maps of electron temperature for months of equinoxes and solstices have been developed. Furthermore, simultaneous studies on two-dimensional time series based on DEMETER measurements and predictions obtained with the IRI-2012 model supply examination of the topside ionosphere during recent deep solar minimum. Comparison with the IRI-2012 model reveals discrepancies between data and prediction, that are especially prominent during the periods of very low solar activity.  相似文献   

6.
The present paper deals with observations of wave activity in the period range 1–60 min at ionospheric heights over the Western Cape, South Africa from May 2010 to July 2010. The study is based on the Doppler type sounding of the ionosphere. The Doppler frequency shift measurements are supplemented with measurements of collocated Digisonde DPS-4D at SANSA Space Sciences, Hermanus. Nine geomagnetically quiet days and nine geomagnetically active days were included in the study. Waves of periods 4–30 min were observed during the daytime independent of the level of geomagnetic activity. Amplitudes of 10–30 min waves always increased between 14:00 and 16:15 UT (16:00–18:15 LT). Secondary maxima were observed between 06:00 and 07:00 UT (08:00–09:00 LT). The maximum wave amplitudes occurred close to the time of passage of the solar terminator in the studied region which is known to act as a source of gravity waves.  相似文献   

7.
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013.  相似文献   

8.
This study presents the first prediction results of a neural network model for the vertical total electron content of the topside ionosphere based on Swarm-A measurements. The model was trained on 5 years of Swarm-A data over the Euro-African sector spanning the period 1 January 2014 to 31 December 2018. The Swarm-A data was combined with solar and geomagnetic indices to train the NN model. The Swarm-A data of 1 January to 30 September 2019 was used to test the performance of the neural network. The data was divided into two main categories: most quiet and most disturbed days of each month. Each category was subdivided into two sub-categories according to the Swarm-A trajectory i.e. whether it was ascending or descending in order to accommodate the change in local time when the satellite traverses the poles. Four pairs of neural network models were implemented, the first of each pair having one hidden layer, and the second of each pair having two hidden layers, for the following cases: 1) quiet day-ascending, 2) quiet day-descending, 3) disturbed day-ascending, and 4) disturbed day-descending. The topside vertical total electron content predicted by the neural network models compared well with the measurements by Swarm-A. The model that performed best was the one hidden layer model in the case of quiet days for descending trajectories, with RMSE = 1.20 TECU, R = 0.76. The worst performance occurred during the disturbed descending trajectories where the one hidden layer model had the worst RMSE = 2.12 TECU, (R = 0.54), and the two hidden layer model had the worst correlation coefficient R = 0.47 (RMSE = 1.57).In all cases, the neural network models performed better than the IRI2016 model in predicting the topside total electron content. The NN models presented here is the first such attempt at comparing NN models for the topside VTEC based on Swarm-A measurements.  相似文献   

9.
Efficacy of SAMI2 model for the Indian low latitude region around 75°E longitudes has been tested for different levels of solar flux. With a slight modification of the plasma drift velocity the SAMI2 model has been successful in reproducing quiet time ionospheric low latitude features like Equatorial Ionization Anomaly. We have also showed the formation of electron hole in the topside equatorial ionosphere in the Indian sector. Simulation results show the formation of electron hole in the altitude range 800–2500?km over the magnetic equator. Indian zone results reveal marked differences with regard to the time of occurrence, seasonal appearances and strength of the electron hole vis-a-vis those reported for the American equatorial region.  相似文献   

10.
In this paper, data of (B0, B1) parameters deduced from the electron density profiles that are inverted from the ionograms recorded at Hainan (19.4°N, 109.0°E), China during a three year period from March 2002 to February 2005 are used to study the diurnal and seasonal variation of (B0, B1) parameters at low latitude. The observational results are compared with the IRI2001 model predictions. Variability study of (B0, B1) in terms of percentage ratio of the inter-quartiles to the median values and correlative analysis between (B0, B1) parameters and other ionospheric characteristics such as hmF2 and M(3000)F2 are also made. Our present study showed that: (1) for daytime hours, the IRI2001 model results with new table option (B0_Tab) is in a better agreement with the observational results (B0_Obs) than the IRI2001 model results with Gulyaeva option (B0_Gul) for summer season, whereas B0_Gul is in a better agreement with B0_Obs than B0_Tab for winter season. For nighttime, in general, B0_Gul is in a better agreement with B0_Obs than B0_Tab. For other occasions, both B0_Tab and B0_Gul showed some systematic deviations from the observational ones. Moreover, the deviations of B0_Tab and B0_Gul from B0_Obs showed opposite trends; (2) the monthly upper (lower) quartiles of (B0, B1) parameter showed a good linear relationship with the monthly median values, this makes it possible to do the regression analysis between the monthly upper (lower) quartiles and the monthly median values, which can give a measure of the variability of these parameters. In terms of the percentage ratio of the inter-quartiles to the median values, the variability of B0 showed a diurnal variation ranging between 22% and 36% with maximum value occurring at pre-sunrise hours, whereas the variability of B1 showed a diurnal variation ranging between 15% and 30% with higher value by daytime than at night; (3) B0 shows high linear correlative relationships with hmF2 and M(3000)F2 for most of the local time period of a day except for a few hours around midnight, whereas B1 showed high linear correlations with B0, hmF2 for daytime hours, but not for nighttime hours. This suggests that it maybe is possible to obtain the synthetic database of (B0, B1) parameter or to construct the model of (B0, B1) using database of hmF2 or M(3000)F2 which is much easier to obtain from experimental measurements.  相似文献   

11.
12.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with hourly time interval resolution for the diurnal variation, obtained with DPS-4 digisonde observations at Hainan (19.4°N, 109.0°E) are used to study the low latitude ionospheric variation behavior. The observational results are compared with the International Reference Ionospheric Model (IRI) predictions. The time period coverage of the data used for the present study is from March 2002 to February 2005. Our present study showed that: (1) In general, IRI predictions using CCIR and URSI coefficients follow well the diurnal and seasonal variation patterns of the experimental values of foF2. However, CCIR foF2 and URSI foF2 IRI predictions systematically underestimate the observed results during most time period of the day, with the percentage difference ΔfoF2 (%) values changing between about −5% and −25%, whereas for a few hours around pre-sunrise, the IRI predictions generally overestimate the observational ones with ΔfoF2 (%) sometimes reaching as large as ∼30%. The agreement between the IRI results and the observational ones is better for the year 2002 than for the other years. The best agreement between the IRI results and the observational ones is obtained in summer when using URSI coefficients, with the seasonal average values of ΔfoF2 (%) being within the limits of ±10%. (2) In general, the IRI predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the observational results. However, when using the measured M(3000)F2 as input, the diurnal variation pattern of hmF2 given by IRI2001 has a much better agreement with the observational one with the detailed fine structures including the pre-sunrise and post-sunset peaks reproduced reasonably well. The agreement between the IRI predicted hmF2 values using CCIR M(30,000)F2 option and the observational ones is worst for the afternoon to post-midnight hours for the high solar activity year 2002. During daytime hours the agreement between the hmF2 values obtained with CCIR M(30,000)F2 option and the observational ones is best for summer season. The discrepancy between the observational hmF2 and that obtained with CCIR M(30,000)F2 option stem from the CCIR M(3000)F2 model, which does not produce the small scale structures observed in the measured M(3000)F2.  相似文献   

13.
The international reference ionosphere, IRI, and its extension to plasmasphere, IRI-Plas, models require reliable prediction of solar and ionospheric proxy indices of solar activity for nowcasting and forecasting of the ionosphere parameters. It is shown that IRI prediction errors could increase for the F2 layer critical frequency foF2 and the peak height hmF2 due to erroneous predictions of the ionospheric global IG index and the international sunspot number SSN1 index on which IRI and IRI-Plas models are built. Regression relation is introduced to produce daily SSN1 proxy index from new time series SSN2 index provided from June 2015, after recalibration of sunspots data. To avoid extra errors of the ionosphere model a new solar activity prediction (SAP) model for the ascending part of the solar cycle SC25 is proposed which expresses analytically the SSN1 proxy index and the 10.7-cm radio flux F10.7 index in terms of the phase of the solar cycle, Φ. SAP model is based on monthly indices observed during the descending part of SC24 complemented with forecast of time and amplitude for SC25 peak. The strength of SC25 is predicted to be less than that of SC24 as shown with their amplitudes for eight types of indices driving IRI-Plas model.  相似文献   

14.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

15.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

16.
This paper presents the results of the analysis of the evolution of coronal holes (CHs) on the Sun during the period May 13, 2010 – March 20, 2022, covering Solar Cycle 24. Our study uses images in the extreme-ultraviolet iron line (Fe XII 193 Å) obtained with the Atmospheric Imager Assembly of the Solar Dynamics Observatory (AIA/SDO). To localize CHs and determine their areas, we used the Heliophysics Event Knowledgebase (HEK). We separate the CHs into polar and non-polar and study the evolutionary features of each group. During this period, an asymmetry between the Northern (N) and Southern (S) Hemispheres (N-S or hemispheric asymmetry) is detected both in the solar activity (SA) indices and in the localization of the maximum areas of the polar and non-polar CHs. It is shown that the hemispheric asymmetry of the areas of polar and non-polar CHs varies significantly over time and that the nature of these changes is clearly related to the SA cycle. We find that for most of the period, the polar CHs were predominated generated in the S- hemisphere while the non-polar CHs were dominant in the N- hemisphere. It is found that the maximum and minimum of the hemispheric imbalance in the areas of non-polar CHs are close in time to the maximum and minimum of the asymmetry of the SA indices (the number and areas of sunspots). The maximum hemispheric imbalance of the polar CH areas is observed at the maximum of Cycle 24, and the minimum imbalance is found at the cycle minimum. These results confirm our assumption that these two types of CHs are of a different nature and that the non-polar CHs, like sunspots, are elements of the general magnetic activity.  相似文献   

17.
The time series of hourly electron density profiles N(h) obtained from 27 ionosonde stations distributed world-wide have been used to obtain N(h) average profiles on a monthly basis and to extract the expected bottom-side parameters that define the IRI profile under quiet conditions. The time series embrace the time interval from 1998 to 2006, which practically contains the entire solar cycle 23. The Spherical Harmonic Analysis (SHA) has been used as an analytical technique for modeling globally the B0 and B1 parameters as general functions on a spherical surface. Due to the irregular longitudinal distribution of the stations over the globe, it has been assumed that the ionosphere remains approximately constant in form for a given day under quiet conditions for a particular coordinate system. Since the Earth rotates under a Sun-fixed system, the time differences have been considered to be equivalent to longitude differences. The time dependence has been represented by a two-degree Fourier expansion to model the annual and semiannual variations and the year-by-year analyses of the B0 and B1 have furnished nine sets of spherical harmonic coefficients for each parameter. The spatial–temporal yearly coefficients have been further expressed as linear functions of Rz12 to model the solar cycle dependence. The resultant analytical model provides a tool to predict B0 and B1 at any location distributed among the used range of latitudes (70°N–50°S) and at any time that improves the fit to the observed data with respect to IRI prediction.  相似文献   

18.
F-region vertical plasma drift velocities were deduced from the hourly hmF2 values acquired from ionogram data over a near dip equatorial station Ouagadougou (12.4°N, 358.5°E, dip angle 5.9°N) in Africa. Our results are compared against the global empirical model of Scherliess and Fejer (1999) incorporated in the IRI model (IRI-2007) for 1600 to 0800 LT from 1 year of data during sunspot maximum year of 1989 (yearly average solar flux intensity, F10.7 = 192) corresponding to the peak phase of solar cycle 22, under magnetically quiet conditions. The drifts are entirely downward between 2000 and 0500 LT bin for both techniques and the root mean square error (RMSE) between the modeled and the ionosonde vertical plasma drifts during these periods is 3.80, 4.37, and 4.74 m/s for June solstice, December solstice and equinox, respectively. Ouagadougou average vertical drifts show evening prereversal enhancement (PRE) velocity peaks (VZP) of about 16, 14, and 17 m/s in June solstice, December solstice, and equinox, respectively, at 1900–2000 LT; whereas global empirical model average drifts indicate VZP of approximately 33 m/s (June solstice), 29 m/s (December solstice), and 50 m/s (equinox) at 1800 LT. We find very weak and positive correlation (+0.10376) between modeled VZP versus F10.7, while ionosonde VZP against F10.7 gives worst and opposite correlation (−0.05799). The results also show that modeled VZPAp indicates good and positive correlation (+0.64289), but ionosonde VZPAp exhibits poor and negative correlation (−0.22477).  相似文献   

19.
A simple semi-empirical model to determine the maximum electron concentration in the ionosphere (NmF2NmF2) for South American locations is used to calculate NmF2NmF2 for a northern hemisphere station in the same longitude sector. NmF2NmF2 is determined as the sum of two terms, one related to photochemical and diffusive processes and the other one to transport mechanisms. The model gives diurnal variations of NmF2NmF2 representative for winter, summer and equinox conditions, during intervals of high and low solar activity. Model NmF2NmF2 results are compared with ionosonde observations made at Toluca-México (19.3°N; 260°E). Differences between model results and observations are similar to those corresponding to comparisons with South American observations. It seems that further improvement of the model could be made by refining the latitude dependencies of coefficients used for the transport term.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号