共查询到20条相似文献,搜索用时 0 毫秒
1.
Hasan Yildiz Ole B. Andersen Mehmet Simav Bahadir Aktug Soner Ozdemir 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The differences between coastal altimetry and sea level time series of tide gauges in between March 1993 and December 2009 are used to estimate the rates of vertical land motion at three tide gauge locations along the southwestern coasts of Turkey. The CTOH/LEGOS along-track coastal altimetry retrieves altimetric sea level anomalies closer to the coast than the standard along-track altimetry products. However, the use of altimetry very close to the coast is not found to improve the results. On the contrary, the gridded and interpolated AVISO merged product exhibits the best agreement with tide gauge data as it provides the smoothest variability both in space and time compared with along track altimetry data. The Antalya gauge to the south (in the Mediterranean Sea) and the Mentes/Izmir gauge to the west (in the Aegean Sea) both show subsidence while the Bodrum tide gauge to the south (in the Aegean Sea) shows no significant vertical land motion. The results are compared and assessed with three independent geophysical vertical land motion estimates like from GPS. The GIA effect in the region is negligible. The VLM estimates from altimetry and tide gauge data are in good agreement both with GPS derived vertical velocity estimates and those inferred from geological and archaeological investigations. 相似文献
2.
Katarzyna Pajak Kamil Kowalczyk 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(5):1768-1780
In this paper, seasonal sea level variations have been determined at five locations in the Baltic Sea from satellite altimetry for the period 1993–2015. The results were compared to tide gauge water level data. Annual and semi-annual amplitudes have been investigated for both sea level anomalies and tide gauge water level. It was found that the two independent observations of sea level variations along the Polish coast are in good agreement both in terms of their annual and semi-annual amplitudes and their annual and semi-annual phases. The annual cycles in the sea level variations measured by altimetry and tide gauge reach maximum values at approximately the same month (November/December).Moreover, this article shows the differences between the annual and semi-annual amplitudes and phases in the sea level anomalies and water level data within the same time frame. The difference in the annual amplitudes between the satellite altimetry and the tide gauge results is between 0.33?cm and 1.53?cm. The maximum differences in the annual cycle of the sea level changes were found at the Swinoujscie station. The correlations between the original series and the calculated curves were determined, and the relationship between the amplitudes and the phases were investigated. The correlation between the annual variations observed from the two independent observation techniques is 0.92.To analyse the dynamics of the change in sea level, the linear trend was estimated from the satellite altimetry and tide gauge time series both in the original time series of the data and in the time series in which seasonal variations were removed. In addition, we calculated the estimated errors of regression and how many years’ worth of data are needed to obtain an accuracy of 0.1?mm per year. The estimated errors of regression showed that to get an accuracy of 0.1?mm per year, we need 100?years of data. 相似文献
3.
C.K. Shum Hyongki Lee P.A.M. Abusali Alexander Braun Guy de Carufel Georgia Fotopoulos Attila Komjathy Chungyen Kuo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Innovative processing of satellite radar altimetry over solid Earth has been successfully applied for observing geodynamic process of glacial isostatic adjustment over the former Laurentide Ice Sheet in the present-day Hudson Bay land region. In this contribution, a simulation is conducted to study the prospects of the applications of space-/airborne and land-based Global Navigation Satellite System (GNSS) reflectometry to synoptically observe global-scale geodynamic processes with a vertical accuracy of ∼2 mm/yr. 相似文献
4.
雷达高度计是一种主动式的微波遥感器,可以提供全球海面高度、有效波高和海面风速数据,利用雷达高度计测得的数据可以进一步用于海洋动力学、海面地形、海洋重力异常和海底地形等方面的研究。经过近50年的发展,雷达测高技术已取得巨大进展,从载荷设计、数据处理到实际应用都积累了大量成果,雷达测高数据不仅用于海洋研究,还广泛用于内陆水域水位变化、海冰厚度变化、冰川质量平衡和异常气候影响等方面研究。本文根据雷达测高技术的基本原理,分析了海洋卫星雷达测高技术发展的现状,并对未来的发展进行了展望。 相似文献
5.
Guiping Feng S. Jin T. Zhang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Sea level changes are threatening the human living environments, particularly along the European Coasts with highly dense population. In this paper, coastal sea level changes in western and southern Europe are investigated for the period 1993–2011 using Global Positioning System (GPS), Tide Gauge (TG), Satellite Altimetry (SA), Gravity Recovery and Climate Experiment (GRACE) and geophysical models. The mean secular trend is 2.26 ± 0.52 mm/y from satellite altimetry, 2.43 ± 0.61 mm/y from TG+GPS and 1.99 ± 0.67 mm/y from GRACE mass plus steric components, which have a remarkably good agreement. For the seasonal variations, annual amplitudes of satellite altimetry and TG+GPS results are almost similar, while GRACE Mass+Steric results are a little smaller. The annual phases agree remarkably well for three independent techniques. The annual cycle is mainly driven by the steric contributions, while the annual phases of non-steric (mass component) sea level changes are almost a half year later than the steric sea level changes. 相似文献
6.
J.-F. Crétaux W. Jelinski S. Calmant A. Kouraev V. Vuglinski M. Bergé-Nguyen M.-C. Gennero F. Nino R. Abarca Del Rio A. Cazenave P. Maisongrande 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
An accurate and continuous monitoring of lakes and inland seas is available since 1993 thanks to the satellite altimetry missions (Topex–Poseidon, GFO, ERS-2, Jason-1, Jason-2 and Envisat). Global data processing of these satellites provides temporal and spatial time series of lakes surface height with a decimetre precision on the whole Earth. The response of water level to regional hydrology is particularly marked for lakes and inland seas in semi-arid regions. A lake data centre is under development at by LEGOS (Laboratoire d’Etude en Géophysique et Océanographie Spatiale) in Toulouse, in coordination with the HYDROLARE project (Headed by SHI: State Hydrological Institute of the Russian Academy of Science). It already provides level variations for about 150 lakes and reservoirs, freely available on the web site (HYDROWEB: http://www.LEGOS.obs-mip.fr/soa/hydrologie/HYDROWEB), and surface-volume variations of about 50 big lakes are also calculated through a combination of various satellite images (Modis, Asar, Landsat, Cbers) and radar altimetry. The final objective is to achieve in 2011 a fully operating data centre based on remote sensing technique and controlled by the in situ infrastructure for the Global Terrestrial Network for Lakes (GTN-L) under the supervision of WMO (World Meteorological Organization) and GCOS (Global Climate Observing System). 相似文献
7.
8.
R.D. Ray B.D. Beckley F.G. Lemoine 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry. To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm yr−1 and a weighted root-mean-square difference of 2.7 mm yr−1. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(1) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive. One of our stations, Malè, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. 相似文献
9.
F. Fund F. Perosanz L. Testut S. Loyer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
GPS data dedicated to sea surface observation are usually processed using differential techniques. Unfortunately, the precision of resulting kinematic positions is baseline-length dependent. So, high precision sea surface observations using differential GPS techniques are limited to coasts, lakes, and rivers. Recent improvements in GPS satellite products (orbits, clocks, and phase biases) make phase ambiguity fixing at the zero difference level achievable and opens up the observation of the sea surface without geographical constraints. This paper recalls the concept of the Integer Precise Point Positioning technique and discusses the precision of GPS buoy positioning. A sequential version of the GINS software has been implemented to achieve single epoch GPS positioning. We used 1 Hz data from a two week GPS campaign conducted in the Kerguelen Islands. A GPS buoy has been moored close to a radar gauge and 90 m away from a permanent GPS station. This infrastructure offers the opportunity to compare both kinematic Integer Precise Point Positioning and classical differential GPS positioning techniques to in situ radar gauge data. We found that Precise Point Positioning results are not significantly biased with respect to radar gauge data and that horizontal time series are consistent with differential processing at the sub-centimetre precision level. Nevertheless, standard deviations of height time series with respect to radar gauge data are typically [4–5] cm. The dominant driver for noise at this level is attributed to errors in tropospheric estimates which propagate into position solutions. 相似文献
10.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(10):2324-2338
Regional sea level studies help to identify the vulnerable areas to the sea level rise. This study investigates the impact of climate modes on sea level variations and trends around Australia using altimetry data, climate indices, and sea level records from tide gauge stations. Here, we show that the sea level variations are negatively correlated with climate indices to the north and west of Australia. The spectral analyses of the climate indices and tide gauge data suggest that a low frequency signal with a period of 11 years emerges during the mid 1980s. Since the 25-year length of the satellite altimetry record is yet too short to detect low frequency signals, their effect on the estimation of regional sea level trend is unknown. Therefore, we estimate the sea level trend with consideration of this signal and using a two-step method. All signals with periods shorter than 7.5 years are first removed from sea level time series and then the trend is estimated using the parametric model that includes the 11-year signal. The skill of the parametric model in explaining the variations in sea level anomaly validates the presence of the 11-year signal detected in the spectrograms of the tide gauge data and climate indices. The average sea level trend for the study area is estimated as 3.85 ± 0.15 mm/year. 相似文献
11.
一般压力表主要用于液体、气体与蒸汽的压力测量,因广泛应用使得对其开展检定工作责任重大。随着压力表检定工作的深入开展,原检定规程JJG52-1999存在一些不适应的地方,国家质量监督检验检疫总局合并了JJG52-1999、JJG573-2003两个规程,于2013年6月24日发布了新规程JJG52-2013,用于弹性元件式一般压力表、压力真空表和真空表的检定工作。用新旧比对的方法分析新版检定规程的修订内容,对JJG52-2013在使用中的问题进行探讨,并在实际应用的基础上对新版检定规程提出了具体意见及建议。 相似文献
12.
Gang Hai Huan Xie Wenjia Du Menglian Xia Xiaohua Tong Rongxing Li 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(7):2120-2139
Slope correction is important to improve the accuracy of satellite radar elevation measurements by mitigating the slope-induced error (SE), especially over uneven ground surfaces. Although several slope correction methods have been proposed, guidance in the form of stepwise algorithm on how to implement these methods in processing radar altimetric data at the coding level, and the differences among these methods need to be presented and discussed systematically. In this paper, three existing types of slope correction methods—the direct method (DM), intermediate method (IM), and relocation method (RM, further divided into RM1 and RM2)—are described in detail. In addition, their main differences and features for various scientific applications are analyzed. We conduct a systematic experiment with CryoSat-2 Low Resolution Mode (LRM) data in a physically stable area around Dome Argus in East Antarctica, where in-situ measurements were available for comparison. The slope correction is implemented separately using the three methods, with the latest high-accuracy Reference Elevation Model of Antarctica (REMA) as the a-priori topography model. The bias and precision of the slope-corrected CryoSat-2 data results from the RM2 is ?0.18 ± 0.86 m based on the comparison with the field Global Navigation Satellite System (GNSS) data. The results from the RM2 indicate higher precision compared to those from the RM1. According to the correlation analysis of the slope-corrected CryoSat-2 data results (RM1 and RM2), the bias enlarges and the precision becomes worse when the surface slope increases from 0 to 0.85°. After a comprehensively comparative analysis, we find that the results from the RM1 and RM2 are superior in precision (0.93 m and 0.86 m) with respect to the GNSS data. The relatively low precision (1.22 m) from the IM is due to the potential error from the a-priori digital elevation model (DEM). The DM has the lowest precision (2.66 m). Another experiment over rough topography in West Antarctica is carried out for comparison, especially between the RM1 (precision of 15.27 m) and RM2 (precision of 16.25 m). In general, the RM is recommended for the SE elimination among the three methods. Moreover, the RM2 is firstly considered over smooth topography due to the superior performance in bias and precision, while the RM1 is more suggested over the rough topography because of the slightly smaller bias and better precision. The IM relies much on the accuracy of the a-prior DEM and is not usually recommended, because of the strict requirement in the sampling time between the radar altimetry data and the a-priori DEM to avoid any surface change over time. 相似文献
13.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(4):1250-1262
The current paper introduces a new multilayer perceptron (MLP) and support vector machine (SVM) based approach to improve daily rainfall estimation from the Meteosat Second Generation (MSG) data. In this study, the precipitation is first detected and classified into convective and stratiform rain by two MLP models, and then four multi-class SVM algorithms were used for daily rainfall estimation. Relevant spectral and textural input features of the developed algorithms were derived from the spectral MSG SEVIRI radiometer channels. The models were trained using radar rainfall data set colected over north Algeria. Validation of the proposed daily rainfall estimation technique was performed by rain gauge network data set recorded over north Algeria. Thus, several statistical scores were calculated, such as correlation coefficient (r), root mean square error (RMSE), mean error (Bias), and mean absolute error (MAE). The findings given by: (r = 0.97, bias = 0.31 mm, RMSE = 2.20 mm and MAE = 1.07 mm), showed a quite satisfactory relationship between the estimation and the respective observed daily precipitation. Moreover, the comparison of the results with those of two advanced techniques based on random forests (RF) and weighted ‘k’ nearest neighbor (WkNN) showed higher accuracy obtained by the proposed model. 相似文献
14.
Paulo Marreiros M. Joana Fernandes Luisa Bastos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Aiming to validate coastal altimetry data, an exploratory experiment was carried out, using a survey ship with onboard GPS and motion compensation systems. The ship navigation plan followed a track as coincident as possible with the passage of two altimetry satellites, Envisat and Jason-1, along the Portuguese coast, in June 2007. 相似文献
15.
GNSS-R干涉测高技术可用于中尺度海面高度观测,具有空间分辨率高、测量精度高等优势。与传统的GNSS-R本地码测高技术相比,GNSS-R干涉测高技术可以有效提升高度测量精度。虽然GNSS-R干涉测高技术已有一些研究,但是基于北斗三号的干涉测高应用还很少。本文根据GNSS-R干涉测高技术优势,针对北斗三号系统在干涉测高技术上的应用,研发了支持北斗三号的GNSS-R干涉测高接收机并描述了整体架构及实现。利用所研发的接收机进行水面干涉测高试验,首次获取了北斗三号B1和B2干涉测高波形,与传统GPS L1和北斗B1本地码测高波形进行对比。对两种方法计算出的水面高度进行对比,结果显示北斗三号干涉测高精度明显优于GPS L1和北斗B1传统本地码测高精度。 相似文献
16.
17.
Rosemary Morrow Pierre-Yves Le Traon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The paper provides a review of recent results on mesoscale ocean dynamics derived from satellite altimetry. Since 1992, we have had an unprecedented 18 year high-resolution monitoring of the ocean mesoscale field. Altimetry is often used in mesoscale studies in synergy with other remote sensing techniques and in situ data. This global, high-resolution data set has allowed oceanographers to quantify the previously unknown seasonal and interannual variations in eddy kinetic energy and eddy heat and salt transports, and investigate their causes. Eddy tracking techniques have allowed us to monitor their propagation pathways, to bring to light the meridional divergence of cyclones and anticyclones, and to question the role of Rossby waves versus non-linear eddies in the mid to high latitude bands. Altimetry has also revealed the presence of zonal fronts and jets everywhere in the ocean, and brought to light how mesoscale eddies can impact back onto the atmospheric circulation. Finally, altimetry, in synergy with other observations and high-resolution numerical models, has helped reveal the complexity of the sub-mesoscale features, associated with stirring and mixing around the mesoscale eddies, of great importance for the vertical exchange of oceanic tracers. Altimetry has revealed the complexity of the mesoscale system… the scientific community is now working to understand the interplay between these mesoscale eddies, the ocean interior and its impact on the overlying atmosphere. 相似文献
18.
Florence Birol Fabien Léger Marcello Passaro Anny Cazenave Fernando Niño Francisco M. Calafat Andrew Shaw Jean-François Legeais Yvan Gouzenes Christian Schwatke Jérôme Benveniste 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(8):2398-2415
In the context of the ESA Climate Change Initiative project, a new coastal sea level altimetry product has been developed in order to support advances in coastal sea level variability studies. Measurements from Jason-1,2&3 missions have been retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker and then ingested in the X-TRACK software with the best possible set of altimetry corrections. These two coastal altimetry processing approaches, previously successfully validated and applied to coastal sea level research, are combined here for the first time in order to derive a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset in six regions: Northeast Atlantic, Mediterranean Sea, West Africa, North Indian Ocean, Southeast Asia and Australia. The study demonstrates that this new coastal sea level product called X-TRACK/ALES is able to extend the spatial coverage of sea level altimetry data ~3.5 km in the land direction, when compared to the X-TRACK 1-Hz dataset. We also observe a large improvement in coastal sea level data availability from Jason-1 to Jason-3, with data at 3.6 km, 1.9 km and 0.9 km to the coast on average, for Jason-1, Jason-2 and Jason-3, respectively. When combining measurements from Jason-1 to Jason-3, we reach a distance of 1.2–4 km to the coast. When compared to tide gauge data, the accuracy of the new altimetry near-shore sea level estimations also improves. In terms of correlations with a large set of independent tide gauge observations selected in the six regions, we obtain an average value of 0.77. We also show that it is now possible to derive from the X-TRACK/ALES product an estimation of the ocean current variability up to 5 km to the coast. This new altimetry dataset, freely available, will provide a valuable contribution of altimetry in coastal marine research community. 相似文献
19.
Weihua Bai Yueqiang Sun Yang Fu Guangwu Zhu Qifei Du Yong Zhang Ying Han Cheng Cheng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The paper explores a method to obtain accurate lake surface heights using measurements of the Global Navigation Satellite System (GNSS) carrier phase reflected from the lake surface. The method is referred to as Global Navigation Satellite System-Reflection (GNSS-R) open-loop difference phase altimetry method. It consists of two key technologies: one is the open-loop tracking method to track the GNSS-R signals, where the direct GNSS signal’s frequency is used as a reference frequency to obtain the carrier phases of the GNSS-R signals; the other key technology is time difference phase altimetry method to invert the lake surface heights using two or more carrier phases of GNSS-R signals received simultaneously. A validation experiment is carried out on the SANYING bridge over GUANTING lake using a GNSS-R receiver developed by the Center for Space Science and Applied Research (CSSAR), processing the data with GNSS-R open-loop difference phase altimetry method. The lake surface height results are consistent with the height results of GPS dual-frequency differential positioning altimetry. The results show that we can achieve centimeter level height in one minute average, by using 11 minutes carrier phase data of three GNSS-R signals received simultaneously. 相似文献
20.
Susana M. Barbosa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Satellite altimetry provides continuous and spatially regular measurements of the height of the sea surface. Sea level responds to density changes of the water, to mass changes, due to addition or reduction of water mass, and to changes in the atmosphere above it. The present study examines the influence of atmospheric effects on sea-level variability in the North-East Atlantic. The association between the height of the sea surface and the North Atlantic Oscillation (NAO) is investigated by considering different sets of altimetry measurements for which the atmospheric effects have been handled differently. Altimetry data not corrected for atmospheric effects are strongly anti-correlated with the state of the NAO, reflecting the hydrostatic response of sea-level to the NAO pressure dipole. The application of an atmospheric correction to satellite altimetry observations in the NE Atlantic decreases variability of the height time series by more than 70% and reduces the amplitude of the seasonal cycle by ∼5 cm. Altimetry data for which atmospheric effects are removed via an inverse barometer correction show a non-negligible correlation with the NAO index at some locations suggesting further indirect non-hydrostatic influences of the state of the NAO on sea level variability. 相似文献