共查询到10条相似文献,搜索用时 0 毫秒
1.
J.O. Olwendo P.J. Cilliers P. Baki C. Mito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This paper presents the first results of total electron content (TEC) depletions and enhancement associated with ionospheric irregularities in the low latitude region over Kenya. At the low latitude ionosphere the diurnal behavior of scintillation is driven by the formation of large scale equatorial depletions which are formed by post-sunset plasma instabilities via the Rayleigh–Taylor instability near the magnetic equator. Data from the GPS scintillation receiver (GPS-SCINDA) located at the University of Nairobi (36.8°E, 1.27°S) for March 2011 was used in this study. The TEC depletions have been detected from satellite passes along the line of sight of the signal and the detected depletions have good correspondence with the occurrence of scintillation patches. TEC enhancement has been observed and is not correlated with increases in S4 index and consecutive enhancements and depletions in TEC have also been observed which results into scintillation patches related to TEC depletions. The TEC depletions have been interpreted as plasma irregularities and inhomogeneities in the F region caused by plasma instabilities, while TEC enhancement have been interpreted as the manifestation of plasma density enhancements mainly associated with the equatorial ionization anomaly crest over this region. Occurrence of scintillation does happen at and around the ionization anomaly crest over Kenyan region. The presence of high ambient electron densities and large electron density gradients associated with small scale irregularities in the ionization anomaly regions have been linked to the occurrence of scintillation. 相似文献
2.
M. Akhoondzadeh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
In 94 km NW of Iquique in Chile (19.610°S, 70.776°W) a powerful earthquake of Mw = 8.2 took place at 23:46:47 UTC (20:46:47 LT) on April 01, 2014. Using GPS-TEC (Total Electron Content) measurements, potential unusual variations around the time and location of the Chile earthquake have been detected based on the median and Artificial Neural Network (ANN) methods. The indices Dst, Kp, Ap and F10.7 were used to distinguish pre-earthquake anomalies from the other anomalies related to the solar-geomagnetic activities. Using the median method, striking anomalies in time series of TEC data are observed 4 days before the earthquake at 14:00 and 16:00 UTC. The ANN method detected a number of anomalies, 4 (02:00 and 16:00 UTC) and 13 (24:00 UTC) days preceding the earthquake. The results indicate that the ANN method due to its capability of non linear learning is quite promising and deserves serious attention as a robust predictor tool for seismo-ionospheric anomalies detection. 相似文献
3.
Zhenzhong Xu Weimin Wang Nan Zhou Xiaofei Song Haotian Zhu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The variation of TEC data at Wuhan station (geographic coordinate: 30.5°N, 114.4°E; geomagnetic coordinate: 19.2°N, 183.8°E) at crest of equatorial anomaly in China from January 1997 to December 2007 were analyzed. Variability with solar activity, annual, semiannual, diurnal and seasonal variation were also analyzed. The MSIS00 model and ISR model were used to analyze the possible mechanisms of the variabilities found in the results. The TEC data in 1997 and 2001 deduced from another crest station Xiamen (geographic coordinate: 24.4°N, 118.1°E; geomagnetic coordinate: 13.2°N, 187.4°E) were used to contrast. Analysis results show that long-term variations of TEC at Xiamen station are mainly controlled by the variations of solar activities. Typical diurnal variation behaves as a minimum of the TEC in the pre-dawn hours around 05:00–06:00LT and a maximum on the afternoon hours around 13:00–15:00LT. Some features like the semiannual anomaly and winter anomaly in TEC have been reported. The anomaly may be the result of common action of the electric field over the magnetic equatorial and the [O/N2] at the crest station. 相似文献
4.
M.J.A. Bolzan F. Becker-GuedesP.R. Fagundes Y. SahaiV.G. Pillat C.M. Wrasse 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The vertical total electron content (VTEC) time series obtained at São José dos Campos (23.2°S, 45.9°W), Brazil, were statistically analyzed to study the low latitude ionosphere in the Brazilian sector during the year of 2006 (a period of low solar activity). Statistical analysis showed that Probability Density Functions (PDFs) and kurtosis have an intermittent behavior on small-scales (periods from minutes to one day) and presence of two functions on large-scales (periods from 3 to 30 days). The skewness result suggests the presence of some kind of waves due to the action of tropospheric sources (lower atmospheric origin). Results obtained by wavelet transform show strong oscillations with scale-sizes between 3 and 30 days, possibly associated with the planetary oscillations. According to these statistical and wavelet analyses we conjecture that there exist two important factors regarding the ionospheric effects: one factor is due to turbulent states found in small scales and the other factor consists in a more or less deterministic state provided by planetary waves (3–16 days or full solar rotation (27–28 days)). Further, these strong oscillations were also noted in multifractal analysis. We found a decrease of multifractality degree of the same scale-sizes. 相似文献
5.
A.O. Alothman M.A. Alsubaie M.E. Ayhan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The ionosphere is a dispersive medium for radio waves with the refractive index which is a function of frequency and total electron content (TEC). TEC has a strong diurnal variation in addition to monthly, seasonal and solar cycle variations and small and large scale irregularities. Dual frequency GPS observations can be utilized to obtain TEC and investigate its spatial and temporal variations. We here studied short term TEC variations over the Kingdom of Saudi Arabia (KSA). A regional GPS network is formed consisting of 16 sites in and around KSA. GPS observations, acquired between 1st and 11th February 2009, were processed on a daily basis by using the Bernese v5.0 software and IGS final products. The geometry-free zero difference smoothed code observables were used to obtain two hour interval snapshots of TEC and their RMS errors at 0.5 × 0.5 degree grid nodes and regional ionosphere models in a spherical harmonics expansion to degree and order six. The equatorial ionized anomaly (EIA) is recovered in the south of 20°N from 08:00 to 12:00 UT. We found that day-by-day TEC variation is more stable than the night time variation. 相似文献
6.
Rebeca López-Montes Román Pérez-Enríquez Eduardo A. Araujo-Pradere 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Ionospheric disturbances associated with solar activity may occur via two basic mechanisms. The first is related to the direct impact on the ionosphere of EUV photons from a flare, and the second by prompt electric field penetration into the magnetosphere during geomagnetic storms. In this paper we examine the possibility that these two mechanisms may have an impact at mid latitudes by calculating the total electron content (TEC) from GPS stations in Mexico during several large X-ray flares. We have found that indeed large, complex flares, which are well located, may affect the mid latitude ionosphere. In fact, in the solar events of July 14, 2000 and April 2001 storms, ionospheric disturbances were observed to increase up to 138 and 150 TECu, respectively, due to the influence of EUV photons. Also, during the solar events of July 2000, April 2001, Halloween 2003, January 2005 and December 2006, there are large ionospheric disturbances (up to 393 TECu in the Halloween Storms), due to prompt penetration electric field, associated with CME producing geomagnetic storm. 相似文献
7.
M.V. Klimenko V.V. Klimenko I.E. Zakharenkova S.A. Pulinets 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The measurements of GPS signal delays show that the local areas of increased/decreased Total Electron Content (TEC) of the ionosphere can be observed before strong earthquakes. The main possible cause of these TEC disturbances is the vertical plasma drift under the action of zonal electric field. The spatial pattern of electric potentials for such electric field was proposed. The model calculations were done to investigate the efficiency of the proposed mechanism. The calculation results revealed the agreement with TEC variations observed before strong earthquakes and showed that the equatorial electrojet variations can be considered as precursors of earthquakes. 相似文献
8.
Chin-Chun Wu K. Liou Shao-Ju Shan C.-L. Tseng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(4):611-616
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionospheric anomaly (EIA) region is studied by analyzing dual-frequency signals of the Global Position System (GPS) acquired from a chain of nine observational sites clustered around Taiwan (21.9–26.2°N, 118.4–112.6°E). In this study, we present results from a statistical study of seasonal and geomagnetic effects on the EIA during solar cycle 23: 1994–2003. It is found that TEC at equatorial anomaly crests yield their maximum values during the vernal and autumnal months and their minimum values during the summer (except 1998). Using monthly averaged Ic (magnitude of TEC at the northern anomaly crest), semi-annual variations is seen clearly with two maxima occurring in both spring and autumn. In addition, Ic is found to be greater in winter than in summer. Statistically monthly values of Ic were poorly correlated with the monthly Dst index (r = −0.22) but were well correlated with the solar emission F10.7 index (r = 0.87) for the entire database for the period during 1994–2003. In contrast, monthly values of Ic were correlated better with Dst (r ? 0.72) than with F10.7 (r ? 0.56) in every year during the low solar activity period (1994–1997). It suggests that the effect of solar activity on Ic is a longer term (years), whereas the effect of geomagnetic activity on Ic is a shorter term (months). 相似文献
9.
Linfeng Huang Jinsong Wang Yong Jiang Jiang Huang Zhou Chen Kai Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The diurnal variations in total electron content (TEC) in the equatorial ionisation anomaly (EIA) region are not always represented by two crests on both sides of the magnetic equator. Sometimes, only an obvious single crest is evident at equatorial and low latitudes. In this paper, we focus on analysis of the morphological features of the single crest phenomenon in TEC around 120°E longitude during geomagnetic quiet days (Kp < 4−). The variations in TEC are also compared with morphological parameters (foF2 and hmF2) derived from the International Reference Ionosphere extended to Plasmasphere (IRI–Plas) model. Our results show that the single crest phenomenon occurs mainly on days with extremely low solar activity, while the corresponding F2 layer critical frequency showed obvious asymmetry, or even only a single peak. 相似文献
10.
P.V.S. Rama Rao K. VenkateshD.S.V.V.D. Prasad K. Niranjan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The Indian sector encompasses the equatorial and low latitude regions where the ionosphere is highly dynamic and is characterized by the equatorial ionization anomaly (EIA) resulting in large latitudinal electron density gradients causing errors and uncertainties in the estimation of range delays in satellite based navigation systems. The diurnal and seasonal variations of standard deviations in the TEC data measured during the low sunspot period 2004–2005 at 10 different Indian stations located from equator to the anomaly crest region and beyond are examined and presented. The day-to-day variability in TEC is found to be lowest at the equatorial station and increases with latitude up to the crest region of EIA and decreases beyond. 相似文献