共查询到20条相似文献,搜索用时 15 毫秒
1.
L.K. Harra 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(1):138-143
It is common to use imaging instruments such as EUV and X-ray imagers and coronagraphs to study large-scale phenomena such as coronal mass ejections and coronal waves. Although high resolution spectroscopy is generally limited to a small field of view, its importance in understanding global phenomena should not be under-estimated. I will review current spectroscopic observations of large-scale dynamic phenomena such as global coronal waves and coronal mass ejections. The aim is to determine plasma parameters such as flows, temperatures and densities to obtain a physical understanding of these phenomena. 相似文献
2.
E. Mitsakou G. Babasidis X. Moussas 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We have used Omniweb data in order to identify the sheath and the ejecta boundaries of 67 shock-driving interplanetary coronal mass ejections during the time period 2003–2006. We examine and compare their statistical properties (speed, magnetic field strength, proton density and temperature, proton plasma beta), with those of the typical solar wind. We also calculate their passage time and radial width. We study the correlation between the ejecta and sheath characteristics. 相似文献
3.
E. Valtonen T. Laitinen K. Huttunen-Heikinmaa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2295-2302
We have studied statistically associations of moderate and intense geomagnetic storms with coronal mass ejections (CMEs) and energetic particle events. The goal was to identify specific energetic particle signatures, which could be used to improve the predictions of the geoeffectiveness of full and partial halo CMEs. Protons in the range 1–110 MeV from the ERNE experiment onboard SOHO are used in the analysis. The study covers the time period from August 1996 to July 2000. We demonstrate the feasibility of energetic particle observations as an additional source of information in evaluating the geoeffectiveness of full and partial halo CMEs. Based on the observed onset times of solar energetic particle (SEP) events and energetic storm particle (ESP) events, we derive a proxy for the transit times of shocks driven by the interplanetary counterparts of coronal mass ejections from the Sun to the Earth. For a limited number of geomagnetic storms which can be associated to both SEP and ESP signatures, we found that this transit time correlates with the strength of geomagnetic storms. 相似文献
4.
R.A. Harrison C.J. Davis D. Bewsher J.A. Davies C.J. Eyles S.R. Crothers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
With the advent of the NASA STEREO mission, we are in a position to perform unique investigations of the evolution of coronal mass ejections (CMEs) as they propagate through the heliosphere, and thus can investigate the relationship between CMEs and their interplanetary counterparts, so-called interplanetary CMEs (ICMEs). ICME studies have been principally limited to single-point, in-situ observations; interpretation of the in-situ characteristics of ICMEs has been used to derive a range of ICME properties which we can now confirm or refute using the STEREO imaging data. This paper is a review of early STEREO CME observations and how they relate to our currently understanding of ICMEs based on in-situ observations. In that sense, it is a first glance at the applications of the new data-sets to this topic and provides pointers to more detailed analyses. We find good agreement with in-situ-based interpretations, but this in turn leads to an anomaly regarding the final stages of a CME event that we investigate briefly to identify directions for future study. 相似文献
5.
N. Gopalswamy H. Xie P. Mäkelä S. Yashiro S. Akiyama W. Uddin A.K. Srivastava N.C. Joshi R. Chandra P.K. Manoharan K. Mahalakshmi V.C. Dwivedi R. Jain A.K. Awasthi N.V. Nitta M.J. Aschwanden D.P. Choudhary 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona. 相似文献
6.
7.
C.Q. Xiang F.S. Wei X.S. Feng J.F. Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2308-2312
The evolution of coronal mass ejection/shock system is investigated by numerically solving the usual set of two-dimensional single-fluid polytropic magnetohydrodynamic equations from 1 Rs to 1 AU in the meridian plane. The simulation result reveals that the coronal mass ejection/shock system formed near the sun evolves into the magnetic cloud/shock system near the earth’s orbit through the following three phases: the initial formation, the dominant latitudinal expansion and the similar expansion. 相似文献
8.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(5):2521-2533
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds 400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies 1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU. 相似文献
9.
B. Schmieder P. DémoulinG. Aulanier 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Solar filament eruptions play a crucial role in triggering coronal mass ejections (CMEs). More than 80% of eruptions lead to a CME. This correlation has been studied extensively during the past solar cycles and the last long solar minimum. The statistics made on events occurring during the rising phase of the new solar cycle 24 is in agreement with this finding. Both filaments and CMEs have been related to twisted magnetic fields. Therefore, nearly all the MHD CME models include a twisted flux tube, called a flux rope. Either the flux rope is present long before the eruption, or it is built up by reconnection of a sheared arcade from the beginning of the eruption. 相似文献
10.
Janusz Nicewicz Grzegorz Michalek 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Space weather is significantly controlled by halo coronal mass ejections (HCMEs) originating close to the central meridian and directing toward the Earth. Unfortunately, coronagraphic observations (especially for HCMEs) are subject to a projection effect which makes it impossible to determine the true radial velocity and width of CMEs. However, these parameters can be estimated by correcting for the projection effect using the asymmetric cone model (Michalek, 2006). A set of 20 CMEs, observed as halo events in the LASCO field of view and simultaneously as limb events in the STEREO/SECCHI field of view, are used to check the accuracy of the asymmetric cone model. For this purpose, characteristics of the considered CMEs (angular widths and radial speeds) measured in STEREO/SECCHI images are compared with those obtained by the asymmetric cone model. We demonstrate that the widths and speeds determined by both methods are very similar. Correlation coefficients for speeds and angular widths are 0.99 and 0.96, respectively. We have also shown that the projection effect is unpredictable and could sometimes be very significant (up to 100% of the velocity measured in the LASCO field of view). On average, the SOHO/LASCO projected speeds for the HCMEs are 23% smaller than the radial velocities obtained from the STEREO/SECCHI images. 相似文献
11.
H. Gutiérrez L. Taliashvili Z. Mouradian 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We study the short-term topological changes of equatorial and polar coronal hole (CH) boundaries, such as a variation of their area and disintegration, associated to reconnection with nearby (within 15° distance) quiescent prominence magnetic fields leading to eruptions and subsequent Coronal Mass Ejections (CMEs). The examples presented here correspond to the recent solar minimum years 2008 and 2009. We consider a temporal window of one day between the CH topological changes and the start and end times of prominence eruptions and onset of CMEs. To establish this association we took into account observational conditions related to the instability of prominence/filaments, the occurrence of a CME, as well as the subsequent evolution after the CME. We found an association between short-term local topological changes in CH boundaries and the formation/disappearance of bright points near them, as well as, between short-term topological changes within the whole CH and eruptions of nearby quiescent prominences followed by the appearance of one or more CMEs. 相似文献
12.
N. Srivastava W.D. Gonzalez H.S. Sawant 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(12):2355-2358
In this paper, a study of the coronal mass ejections (CMEs) observed by Solar Maximum Mission satellite (SMM) during the period March – September, 1980, is presented. An attempt to identify various possible associations of the solar phenomena, for example, the location of coronal holes, the role of eruptive filaments or prominences, and current-sheets with the CMEs is carried out. It is shown that the combined associations of these three play an important role in the occurrence of geoeffective CMEs and also act as a tool to predict the associated geomagnetic activity. 相似文献
13.
R. Chandra N. Gopalswamy P. Mäkelä H. Xie S. Yashiro S. Akiyama W. Uddin A.K. Srivastava N.C. Joshi R. Jain A.K. Awasthi P.K. Manoharan K. Mahalakshmi V.C. Dwivedi D.P. Choudhary N.V. Nitta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares. 相似文献
14.
N. Gopalswamy A. Lara P.K. Manoharan R.A. Howard 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2289-2294
We extend the empirical coronal mass ejection (CME) arrival model of Gopalswamy et al. [Gopalswamy, N. et al. Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res. 106, 29207, 2001] to predict the 1-AU arrival of interplanetary (IP) shocks. A set of 29 IP shocks and the associated magnetic clouds observed by the Wind spacecraft are used for this study. The primary input to this empirical shock arrival model is the initial speed of white-light CMEs obtained using coronagraphs. We use the gas dynamic piston–shock relationship to derive the ESA model which provides a simple means of obtaining the 1-AU speed and arrival times of interplanetary shocks using CME speeds. 相似文献
15.
N.C. Joshi W. Uddin A.K. Srivastava R. Chandra N. Gopalswamy P.K. Manoharan M.J. Aschwanden D.P. Choudhary R. Jain N.V. Nitta H. Xie S. Yashiro S. Akiyama P. Mäkelä P. Kayshap A.K. Awasthi V.C. Dwivedi K. Mahalakshmi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
16.
C. Caroubalos P. Preka-Papadema H. Mavromichalaki X. Moussas A. Papaioannou E. Mitsakou A. Hillaris 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13–14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere. 相似文献
17.
P. Démoulin E. Pariat 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Mounting observational evidence of the emergence of twisted magnetic flux tubes through the photosphere have now been published. Such flux tubes, formed by the solar dynamo and transported through the convection zone, eventually reach the solar atmosphere. Their accumulation in the solar corona leads to flares and coronal mass ejections. Since reconnections occur during the evolution of the flux tubes, the concepts of twist and magnetic stress become inappropriate. Magnetic helicity, as a well preserved quantity, in particular in plasma with high magnetic Reynolds number, is a more suitable physical quantity to use, even if reconnection is involved. 相似文献
18.
P.T. Gallagher C.A. Young J.P. Byrne R.T.J. McAteer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic field that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and suppressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications. 相似文献
19.
J. Amrico Gonzlez-Esparza S. Jeyakumar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1815-1820
We study the heliocentric evolution of ICME-like disturbances and their associated transient forward shocks (TFSs) propagating in the interplanetary (IP) medium comparing the solutions of a hydrodynamic (HD) and magnetohydrodynamic (MHD) models using the ZEUS-3D code [Stone, J.M., Norman, M.L., 1992. Zeus-2d: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. i – the hydrodynamic algorithms and tests. Astrophysical Journal Supplement Series 80, 753–790]. The simulations show that when a fast ICME and its associated IP shock propagate in the inner heliosphere they have an initial phase of about quasi-constant propagation speed (small deceleration) followed, after a critical distance (deflection point), by an exponential deceleration. By combining white light coronograph and interplanetary scintillation (IPS) measurements of ICMEs propagating within 1 AU [Manoharan, P.K., 2005. Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Physics 235 (1–2), 345–368], such a critical distance and deceleration has already been inferred observationally. In addition, we also address the interaction between two ICME-like disturbances: a fast ICME 2 overtaking a previously launched slower ICME 1. After interaction, the leading ICME 1 accelerates and the tracking ICME 2 decelerates and both ICMEs tend to arrive at 1 AU having similar speeds. The 2-D HD and MHD models show similar qualitative results for the evolution and interaction of these disturbances in the IP medium. 相似文献
20.
G.L. Huang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1191-1194
Coronal magnetic field and nonthermal electrons are very important parameters for understanding of the global heliophysical processes. A flare on November 1, 2004 is selected for self-consistent calculations of coronal magnetic field parallel and perpendicular to the line-of-sight, and density of nonthermal electrons from Nobeyama observations. Both of the diagnosis methods and results are discussed in this paper. 相似文献