共查询到18条相似文献,搜索用时 15 毫秒
1.
Laura I. Fernández Amalia M. Meza Ana G. Elías 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The quasi-biennial oscillation, QBO, a well known periodicity in the equatorial stratospheric zonal winds, is also found in ionospheric parameters and in solar and geomagnetic activity indices. Many authors speculated about the link between the QBO in solar and geomagnetic activity and the QBO in atmospheric parameters. In this work we analyze the presence of the QBO in the ionosphere using the Vertical Total Electron Content (VTEC) values obtained from Global Navigation Satellite System (GNSS) measurements during the period 1999–2012. In particular, we used IONEX files, i.e. the International GNSS Service (IGS) ionospheric products. IONEX provide VTEC values around the world at 2-h intervals. From these data we compute global and zonal averages of VTEC at different local times at mid and equatorial geomagnetic latitudes. VTEC and Extreme Ultra Violet (EUV) solar flux time series are analyzed using a wavelet multi resolution analysis. In all cases the QBO is detected among other expected periodicities. 相似文献
2.
Hongping Zhang Peiliang Xu Wenhui Han Maorong Ge Chuang Shi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Currently, ground-based Global Navigation Satellite System (GNSS) stations of the International GNSS Service (IGS) are distributed unevenly around the world. Most of them are located on the mainland, while only a small part of them are scattered on some islands in the oceans. As a consequence, many unreasonable zero values (in fact negative values) appear in Vertical Total Electron Content (VTEC) of European Space Agency (ESA) and Center for Orbit Determination in Europe (CODE) IONEX products, especially in 2008 and 2009 when the solar activities were rather quiet. To improve this situation, we directly implement non-negative physical constraints of ionosphere for global ionosphere maps (GIM) with spherical harmonic functions. Mathematically, we propose an inequality-constrained least squares method by imposing non-negative inequality constraints in the areas where negative VTEC values may occur to reconstruct GIM models. We then apply the new method to process the IGS data in 2008. The results have shown that the new algorithm efficiently eliminates the unwanted behavior of negative VTEC values, which could otherwise often be seen in the current CODE and ESA GIM products in both middle and high latitude areas of the Southern Hemisphere (45°S∼90°S) and the Northern Hemisphere (50°N∼90°N). About 64% of GPS receivers’ DCBs have been significantly improved. Finally, we compare the GIM results between with and without the inequality constraints, which has clearly shown that the GIM result with inequality constraints is significantly better than that without the inequality constraints. The inequality-constrained GIM result is also highly consistent with the final IGS products in terms of root mean squared (RMS) and mean VTEC. 相似文献
3.
变量多重相关性对主成分分析的危害 总被引:3,自引:0,他引:3
王惠文 《北京航空航天大学学报》1996,22(1):65-70
证实了主成分分析完全无法消除变量系统的多重相关性和重叠信息不良影响,指出变量多重相关性无论从方向上还是从数量上都会扭曲主成分分析的客观结论,由此得知,在进行主成分分析之前,对变量系统的选择必须是极其慎重的。 相似文献
4.
5.
太阳耀斑与太阳质子事件的发生通常与太阳活动区存在非常密切的关系, 对这种关系的深入分析有助于太阳耀斑和太阳质子事件预报模型的建立. 本文利用主成分分析(Principal Component Analysis, PCA)方法对1997-2010年太阳质子事件所在活动区的主要参量进行分析, 选取的参量包括黑子磁分类、 McIntosh分类、太阳黑子群面积、10.7 cm射电流量、耀斑指数、质子耀斑位置和软X射线耀斑强度. 结果得到81个太阳活动主成分得分值排序(得分值代表每个事件的强弱), 与太阳质子事件峰值流量、太阳黑子年均值以及10.7 cm射电流量年均值的对比显示相似度非常高, 表明主成分得分值一定程度上可以反映太阳活动的强弱规律. 相似文献
6.
I.R. Petrova V.V. Bochkarev R.R. Latypov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(7):1652-1659
The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale. 相似文献
7.
P.A. Bradley I. Stanislawska G. Juchnikowski 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Available long-term and near-real time global and regional maps of foF2 are examined in relation to telecommunication and aeronomy requirements and recommendations are made for the best present-day maps to adopt. In particular, it is shown that current CCIR maps do not meet all requirements and should not necessarily be regarded as standards against which other mappings should be compared. 相似文献
8.
Qiang Zhang Qile Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(3):1214-1226
Spherical harmonic (SH) expansion is widely used to model the global ionosphere map (GIM) of vertical total electron content (VTEC). According to the impact of different data processing methods of the SH expansion model on the VTEC maps, we specifically performed comprehensive analysis in terms of the data sampling rate, the time resolution, the spherical harmonic degree, and the relative constraint. One month of GPS data (January in 2016) from the International GNSS (Global Navigation Satellite System) Service (IGS) network in a moderate ionospheric activity period at the descending phase of Solar Cycle 24 was processed. To improve the computational efficiency of the daily GIM generation, the data sampling rate of 5?min was recommended allowing the GIM precision loss within 0.10 TECU (total electron content unit). The global VTEC map could be better represented in temporal and spatial domains with higher time resolution and higher spherical harmonic degree, especially at low latitude bands and in the southern hemisphere. The GIM precision improvement was about 10.91% for 1-h and about 15.15% for 0.5-h compared with the commonly used 2-h time resolution. The use of spherical harmonic degree 17 or 20 instead of 15 could improve the precision by 3.19% or 6.06%. We also found that an optimal relative constraint had to be found experimentally considering both the GIM precision and the GIM root mean square (RMS) map. 相似文献
9.
F. Azpilicueta B. Nava 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):150-162
The Winter Anomaly (WA) is an ionospheric phenomenon, particularly related to the F2-layer, that is classically defined as the situation in which the ionization level during winter is higher than during summer for a certain location. This situation is anomalous because it contradicts what would be naturally expected with summer’s ionization levels higher than winter ones. This phenomenon has been a matter of study since the early decades of the XX century.This contribution tackles the study of the WA based on long time series (up to two solar cycles) of Total Electron Content (TEC) measurements over a globally distributed network of stations. The work done relies on a threefold strategy including: a classical approach based on the comparison of the winter and summer maximum TEC values, that confirmed the results previously documented; an intermediate approach with maximum TEC values modelled as linear functions of the solar radiation level, that allowed to identify stations where the WA is likely to be observed (and at what solar radiation level) and where is not; a final original approach where the maximum TEC values are modelled using Chapman’s function for the seasonal variations, linear regressions for the solar activity dependence and the introduction of site and month dependent equivalent ionization coefficients for the remaining effects. The main conclusions are that the coefficients for winter months seem to depend mainly on geomagnetic latitude, to increase towards high latitudes and to be asymmetric between hemisphere. In accordance to these findings, the occurrences of WA effects would be regulated by proper combinations of these three effects. 相似文献
10.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(11):2529-2539
From September 7 to 8, 2017, a G4-level strong geomagnetic storm occurred, which seriously impacted on the Earth’s ionosphere. In this work, the global ionospheric maps released by Chinese Academy of Sciences are used to investigate the ionospheric responses over China and its adjacent regions during the strong storm. The prominent TEC enhancements, which mainly associated with the neutral wind and eastward prompt penetration electric field, are observed at equatorial ionization anomaly crests during the main phase of the storm on 8 September 2017. Compared with those on 8 September, the TEC enhancements move to lower-latitude regions during the recovery phase on 9 September. A moderate storm occurred well before the start of the strong storm causes similar middle-latitude TEC enhancements on 7 September. However, the weak TEC depletion is observed at middle and low latitude on 9–10 September, which could be associated with the prevailing westward disturbance electric field or storm-time neural composition changes. In addition, the storm-time RMS and STD values of the ionospheric TEC grids over China increase significantly due to the major geomagnetic storm. The maximum of the RMS reaches 12.0 TECU, while the maximum of the STD reaches 8.3 TECU at ~04UT on 8 September. 相似文献
11.
Ewa Slominska Hanna Rothkaehl 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The diurnal, seasonal and latitudinal variations of the electron temperature in the Earth‘s topside ionosphere during relatively low solar activity period of 2005 – 2008 are investigated. In order to examine seasonal variations and morphology of the topside ionospheric plasma temperature, CNES micro-satellite DEMETER ISL data are used. Presented study is oriented on the dataset gathered in 2005 and 2008. Within conducted analysis, global maps of electron temperature for months of equinoxes and solstices have been developed. Furthermore, simultaneous studies on two-dimensional time series based on DEMETER measurements and predictions obtained with the IRI-2012 model supply examination of the topside ionosphere during recent deep solar minimum. Comparison with the IRI-2012 model reveals discrepancies between data and prediction, that are especially prominent during the periods of very low solar activity. 相似文献
12.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(1):163-174
Due to the differences of ionospheric modeling methods and selected tracking stations, the accuracy and consistency of Global Ionospheric Maps (GIMs) released by Ionosphere Associate Analysis Centers (IAACs) are different. In this study, we evaluate and analyze in detail the accuracy and consistency of GIMs final products provided by six IAACs from three different aspects. Firstly, the comparison of these GIMs shows that the mean bias (MEAN) is related to the modeling methods of various IAACs. The variation trend of the standard deviation (STD) is consistent with the solar activities, and accompanied by certain seasonal and annual periodic variations. The MEAN between IGS and each center is about −1.3 to 1.0 TECU, and the STD is about 1.4–2.5 TECU. Secondly, the validation with GPS TEC shows that the STD of CODE is the smallest at various latitudes, and the STD is about 0.7–4.5 TECU. Thirdly, The validation with the Jason2 VTEC shows that the STD between Jason2 and IAACs is about 4.4–5.2 TECU. In addition, the STD between Jason2 and six GIMs in the areas with more tracking stations is better than that of the regions with fewer tracking stations in different latitude regions. Regardless of whether the tracking stations are more or less, the MEAN and STD in high solar activity are larger than in low solar activity. 相似文献
13.
电离层时延误差是导航定位信号在空间传播路径上的主要误差源之一,因此全面了解GNSS电离层模型的改正精度具有一定现实意义.根据GPS,BDS和Galileo系统所采用的电离层修正模型,利用2014年电离层校正参数,以高精度全球电离层图为基准,评估分析了三大系统电离层时延的改正精度.结果表明:目前GNSS使用的几种电离层修正模型的改正率在65~75%左右;Galileo系统使用的第二版NeQuick模型与第一版NeQuick模型相比在修正精度上并无显著提高;GPS使用的Klobuchar 8参数模型在北半球25°-45°N的中纬度地区精度很高,但是在全球其他区域精度较低,分布性较差,而NeQuick模型全球改正率分布则较为平均且平滑. 相似文献
14.
Pascal Willis Claude Boucher Hervé Fagard Bruno Garayt Marie-Line Gobinddass 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
DORIS is one of the four geodetic space techniques participating to the Global Geodetic Observing System (GGOS). Since the early development of this system, the Institut Géographique National played a specific and active role. Within, the International DORIS Service (IDS), IGN is in a particular position. While it is responsible for the installation and the maintenance of the DORIS ground tracking stations, it also handles one of the two IDS data center delivering DORIS data and products and has been an IDS Analysis Center for years, providing all possible IDS products, in particular the latest ignwd08 time series in preparation of ITRF2008. This paper explains the different aspects of the IGN contribution to IDS from an historical point of view, presents current activities and scientific results and provides a perspective for future activities. Recent DORIS results show a 10 mm precision or better when more than four DORIS satellites are available. Comparisons between recent DORIS solutions (ign07d02 and ign09d02) and past ITRF realizations show that errors are shared between the DORIS and the ITRF realizations. Some problems related to DORIS data processing are also discussed and possible ways to solve them in the future are discussed. In particular, we can now reject the tropospheric origin of the problem detected in the Envisat data after the software upload of October 12, 2004. A few applications in geodesy (terrestrial reference frame, Earth’s polar motion) and geophysics are also discussed as a natural extension of these service-type activities. 相似文献
15.
利用GOES-15, SDO, SOHO卫星以及国际地磁台网的地磁活动指数数据, 对中国 某颗地 球同步轨道卫星(以GEO-X代替)在2012年3月9日02:50UTC发生的异常原因进 行了研究, 分析故障发生期间的空间天气特点, 采用文献[8]提出的SEAES-GEO空 间环境引起地球同步轨道卫星异常的专家系统对卫星故障期间的内部充电危 险系数、单粒子效应危险系数以及表面充电危险系数进行定量计算和危险等 级划分. 结果表明, 在卫星故障时刻, 其内部充电危险系数小于3, 表面充电危险 系数约为0.0011, 表面充电和内部充电不是造成GEO-X故障的原因; 受故障期间 质子事件影响, 单粒子效应危险系数持续维持在1以上, GEO-X卫星故障时刻单 粒子效应危险系数ZSEE达到46.3, 正好处于单粒子效应危险等级的 红色阶段. 因此研究认为单粒子效应可能是造成本次卫星故障的主要原因. 相似文献
16.
Kewei Xi Xiaoya Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(12):4054-4065
The ionospheric error affects the accuracy of the Global Navigation Satellite Systems observation and precise orbit determination. Usually, only the first order ionospheric error is considered, which can be eliminated by the ionospheric-free linear combination observation. But the remaining higher order ionospheric error will affect the accuracy of observations and their applications. In this paper, the influence of the higher order ionospheric error have been studied by using the International Geomagnetic Reference Field 13 and the Global Ionosphere Maps model produced by the Center for Orbit Determination in Europe. Focus on ionospheric error, the experiment of paper at doy 302 in 2019, which show that the second order ionospheric error impacting BeiDou Navigation Satellite System (BDS) B1I and B3I observation is 6.3569 mm and 11.8484 mm, respectively. Whereas, the third order ionospheric error impacting BDS B1I and B3I observation is 0.1734 mm and 0.3977 mm, respectively. Due to the current measurement accuracy of BDS carrier-phase observation can reach 2 mm, the influence of high order ionospheric error on observation should be considered. For BDS precise orbit determination, the orbit overlapping results are indicated that its orbit accuracy can be improved approximately 5 mm with the higher order ionospheric error correction, which is also in agreement with the results of Satellite Laser Ranging in this work. 相似文献
17.
东亚大陆磁异常区地磁太阳日变化的异常特征 总被引:6,自引:0,他引:6
使用IGY/IGC(1957。7。1-1959。12。30)期间全球地磁台网和中国长春、北京、上海、拉萨四台的地磁资料,分析了东亚大陆磁常区地磁异常区地磁太阳静日变化Sq的异常特征,分析表明,组成Sq的两个主要谐波(1次和2次谐波)在东亚大陆常区呈现出不同于其他区的分布特征;X分量振幅值一般高于地磁纬度相同的其他地区的振幅。振幅极小值出现的纬度向南移动约20°,极小值的量值小于其他地区,由东亚异常 相似文献
18.
O.N. Sherstyukov A.D. AkchurinE.Yu. Ryabchenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
A technique of modelling the one-hop radio wave propagation at middle latitudes in the presence of sporadic E-Layer is presented. The technique is focused on the performance of the long-term forecast of the maximum usable frequency range and on the increase of the radio communication reliability. Examples of calculation for medium-distance paths are shown. 相似文献