共查询到20条相似文献,搜索用时 15 毫秒
1.
Steven A. Walker Lawrence W. Townsend John W. Norbury 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Estimates of organ dose equivalents for the skin, eye lens, blood forming organs, central nervous system, and heart of female astronauts from exposures to the 1977 solar minimum galactic cosmic radiation spectrum for various shielding geometries involving simple spheres and locations within the Space Transportation System (space shuttle) and the International Space Station (ISS) are made using the HZETRN 2010 space radiation transport code. The dose equivalent contributions are broken down by charge groups in order to better understand the sources of the exposures to these organs. For thin shields, contributions from ions heavier than alpha particles comprise at least half of the organ dose equivalent. For thick shields, such as the ISS locations, heavy ions contribute less than 30% and in some cases less than 10% of the organ dose equivalent. Secondary neutron production contributions in thick shields also tend to be as large, or larger, than the heavy ion contributions to the organ dose equivalents. 相似文献
2.
G.A. Bazilevskaya M.B. KrainevV.S. Makhmutov Yu.I. StozhkovA.K. Svirzhevskaya N.S. Svirzhevsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Observations of charged particle fluxes in the stratosphere of the polar regions represent the cosmic rays variations with energy above 100 MeV. At the end of 2009 these fluxes reached the highest level for the time of observations from mid 1957 and were by 17% higher than the previous extremum value of May 1965. In the mean time the ground-based neutron monitors showed the remarkably less count rate enhancement. These results argue for the significant change in the energy spectrum of incoming particles in 2008–2009 in the energy range of ∼100–1500 MeV/n. 相似文献
3.
H.S. Ahluwalia R.C. Ygbuhay M.L. Duldig 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We study two intense Forbush decreases that occurred during two adjacent SOLTIP (Solar connection of Transient Interplanetary Processes) intervals; namely SOLTIP 1 (22–27 March 1991) and SOLTIP 2 (1–17 June 1991); galactic cosmic ray intensity at the depth of the second Forbush decrease was the lowest ever recorded since continuous monitoring by Climax neutron monitor began in 1951 (58% below the solar minimum value of 1954), indicating extreme conditions in the heliosphere that prevented galactic cosmic rays from reaching the Earth. These decreases were seen propagating in outer heliosphere by the deep space missions Voyagers 1, 2 and Pioneer 10, 11, with suitable time delays. We analyze hourly, pressure corrected, neutron monitor data from the global sites in both hemispheres, and muon telescopes located underground; they respond to 10–300 GV range of the galactic cosmic ray spectrum. This circumstance provides us an ideal opportunity to study the rigidity dependence of the amplitudes of the two Forbush decreases. In both cases the amplitude is found to be a power law in rigidity, with negative exponents. 相似文献
4.
H.S. Ahluwalia C. Lopate R.C. Ygbuhay M.L. Duldig 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
We present a study of the galactic cosmic ray modulation for sunspot cycle 23. We use the monthly and the annual mean hourly, pressure corrected, data from neutron monitors of the global network (monthly rate is calculated as the average of the hourly pressure corrected values). We draw attention to an asymmetry in the galactic cosmic ray (GCR) recovery during odd and even cycles for the monthly mean hourly rate data. For over half a century of observations, we find that the recovery for the odd cycles is to a higher level than for the even cycles. Qualitatively the effect is ascribed to charged particle drifts in inhomogeneous interplanetary magnetic field. Even so it has not been possible to arrive at a quantitative, self-consistent, explanation in terms of drifts at higher and lower GCR rigidities. We also study the rigidity dependence of the amplitude of 11-year modulation over a wide range (1–200 GV) of GCR spectrum; it is a power law in rigidity with an exponent −1.22. We discuss the implication of these findings on quasi-linear diffusion theories of modulation. We reflect on GCR recovery pattern for 2006–2009. 相似文献
5.
6.
V. Rusov A. Glushkov N. Loboda O. Khetselius V. Khokhlov A. Svinarenko G. Prepelitsa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1614-1617
The spectrum of turbulent pulsations induced in the atmosphere by the galactic cosmic rays is defined. A possible manifestation of genesis of fractal dimensions in the system of “spectrum of turbulent pulsations of cosmic plasma – galactic cosmic rays’ spectrum – spectrum of atmospheric turbulent pulsations” is analyzed. 相似文献
7.
S. Veretenenko M. Ogurtsov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones. 相似文献
8.
9.
John W. Norbury 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The Sun undergoes several well known periodicities in activity, such as the Schwabe 11 year cycle, the Gleissberg 80–90 year cycle, the Suess 200–210 year cycle and the Halstatt 2200–2300 year cycle. In addition, there is evidence that the 20th century levels of solar activity are unusually high. The years 2020–2040 are expected to coincide with increased activity in human space flight beyond low Earth orbit. The solar cycles and the present level of solar activity are reviewed and their activities during the years 2020–2040 are discussed with a perspective on space radiation and the future program of space flight. It is prudent to prepare for continuing levels of high solar activity as well as for the low levels of the current deep minimum, which has corresponded to high galactic cosmic ray flux. 相似文献
10.
S. Veretenenko M. Ogurtsov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Possible reasons for the temporal instability of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation were studied. It was shown that the detected earlier ∼60-year oscillations of the amplitude and sign of SA/GCR effects on the troposphere pressure at high and middle latitudes (Veretenenko and Ogurtsov, Adv.Space Res., 2012) are closely related to the state of a cyclonic vortex forming in the polar stratosphere. The intensity of the vortex was found to reveal a roughly 60-year periodicity affecting the evolution of the large-scale atmospheric circulation and the character of SA/GCR effects. An intensification of both Arctic anticyclones and mid-latitudinal cyclones associated with an increase of GCR fluxes at minima of the 11-year solar cycles is observed in the epochs of a strong polar vortex. In the epochs of a weak polar vortex SA/GCR effects on the development of baric systems at middle and high latitudes were found to change the sign. The results obtained provide evidence that the mechanism of solar activity and cosmic ray influences on the lower atmosphere circulation involves changes in the evolution of the stratospheric polar vortex. 相似文献
11.
Tony C. Slaba Steve R. Blattnig Brandon Reddell Amir Bahadori Ryan B. Norman Francis F. Badavi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar–O’Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data. 相似文献
12.
Z.W. Lin J.H. Adams Jr. A.F. Barghouty S.D. Randeniya R.K. Tripathi J.W. Watts P.P. Yepes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We have used several transport codes to calculate dose and dose equivalent values as well as the particle spectra behind a slab or inside a spherical shell shielding in typical space radiation environments. Two deterministic codes, HZETRN and UPROP, and two Monte Carlo codes, FLUKA and Geant4, are included. A soft solar particle event, a hard solar particle event, and a solar minimum galactic cosmic rays environment are considered; and the shielding material is either aluminum or polyethylene. We find that the dose values and particle spectra from HZETRN are in general rather consistent with Geant4 except for neutrons. The dose equivalent values from HZETRN and Geant4 are not far from each other, but the HZETRN values behind shielding are often lower than the Geant4 values. Results from FLUKA and Geant4 are mostly consistent for considered cases. However, results from the legacy code UPROP are often quite different from the other transport codes, partly due to its non-consideration of neutrons. Comparisons for the spherical shell geometry exhibit the same qualitative features as for the slab geometry. In addition, results from both deterministic and Monte Carlo transport codes show that the dose equivalent inside the spherical shell decreases from the center to the inner surface and this decrease is large for solar particle events; consistent with an earlier study based on deterministic radiation transport results. This study demonstrates both the consistency and inconsistency among these transport models in their typical space radiation predictions; further studies will be required to pinpoint the exact physics modules in these models that cause the differences and thus may be improved. 相似文献
13.
Daniel Matthiä Thomas BergerGünther Reitz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. 相似文献
14.
L. Sihver T. Sato K. Gustafsson D. Mancusi H. Iwase K. Niita H. Nakashima Y. Sakamoto Y. Iwamoto N. Matsuda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
PHITS (Particle and Heavy-Ion Transport code System) is a general-purpose three-dimensional Monte Carlo code, developed and maintained by RIST, JAEA and KEK in Japan together with Sihver et al. at Chalmers in Sweden. PHITS can deal with the transports of all varieties of hadrons and heavy ions with energies up to around 100 GeV/nucleon, and in this paper the current status of PHITS is presented. We introduce a relativistically covariant version of JQMD, called R-JQMD, that features an improved ground state initialization algorithm, and we will present the introduction of electron and photon transport in PHITS using EGS5, which have increased the energy region for the photon and energy transport from up to around 3 GeV to up to several hundred GeV depending on the atomic number of the target. We show how the accuracy in dose and fluence calculations can be improved by using tabulated cross sections. Benchmarking of shielding and irradiation effects of high energy protons in different materials relevant for shielding of accelerator facilities is also presented. In particular, we show that PHITS can be used for estimating the dose received by aircrews and personnel in space. In recent years, many countries have issued regulations or recommendations to set annual dose limitations for aircrews. Since estimation of cosmic-ray spectra in the atmosphere is an essential issue for the evaluation of aviation doses, we have calculated these spectra using PHITS. The accuracy of the atmospheric propagation simulation of cosmic-ray performed by PHITS has been well verified by experimental cosmic-ray spectra taken under various conditions. Based on a comprehensive analysis of the simulation results, an analytical model called “PARMA” has been proposed for instantaneously estimating the atmospheric cosmic-ray spectra below the altitude of 20 km. We have also performed preliminary simulations of long-term dose distribution measurements at the ISS performed with the joint ESA-FSA experiment MATROSHKA-R (MTR-R) led by the Russian Federation Institute of Biomedical Problems (IMBP) and the ESA supported experiment MATROSHKA (MTR), led by the German Aerospace Center (DLR). For the purpose of examining the applicability of PHITS to the shielding design in space, the absorbed doses in a tissue equivalent water phantom inside an imaginary space vessel has been estimated for different shielding materials of different thicknesses. The results confirm previous results which indicate that PHITS is a suitable tool when performing shielding design studies of spacecrafts. 相似文献
15.
I.V. Dorman L.I. Dorman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
As many great discoveries, the phenomenon of cosmic rays was discovered mainly accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. We describe the history how step by step cosmic rays was discovered and why this phenomenon received misnomer, how in cosmic rays was discovered the first antiparticle – positron. These discoveries were recognized among greatest in the 20th Century and were awarded by Nobel Prize. 相似文献
16.
Bagrat Mailyan Ashot Chilingarian 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
A study of daily variations of secondary Cosmic Rays (CR) is performed using data on charged and neutral CR fluxes. Particle detectors of Aragats Space-Environmental Center (ASEC), Space Environmental Viewing and Analysis Network (SEVAN) and neutron monitors of the Neutron Monitor Database (NMDB) are used. ASEC detectors continuously register various species of secondary CR with different threshold energies and incident angles. NMDB joins data of 12 Eurasian neutron monitors. Data at the beginning of the 24th solar activity cycle are used to avoid biases due to solar transient events and to establish a benchmark for the monitoring of solar activity in the new started solar cycle. 相似文献
17.
Martin Lemoine 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The origin of cosmic rays with energy E ? 1018 eV is a long-standing problem in astrophysics. The development of ever larger detectors has brought in key experimental results in the past decade, most particularly the detection of a cut-off at the expected position for the long sought Greisen–Zatsepin–Kuzmin suppression as well as evidence for large scale anisotropies. This paper summarizes and discusses the recent achievements in this field. 相似文献
18.
M.B. Krainev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The different types of the data recorded in the experiment of the regular balloon monitoring of cosmic rays (carried out since 1957 by Lebedev Physical Institute, Moscow, Russia, in several locations) are described. So called detailed information (the form of each pulse detected by the ground-based receiver) recorded during the last 12 years is discussed in more details. The use of these data both for getting and correcting the standard results of the experiment and for obtaining some additional information on the cosmic rays in the Earth’s atmosphere is considered. 相似文献
19.
E.G. Berezhko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(3):429-441
We analyse the results of recent measurements of nonthermal emission from individual supernova remnants (SNRs) and their correspondence to the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is shown that the theory fits these data in a satisfactory way and provides the strong evidences for the efficient CR production in SNRs accompanied by significant magnetic field amplification. Magnetic field amplification leads to considerable increase of CR maximum energy so that the spectrum of CRs accelerated in SNRs is consistent with the requirements for the formation of Galactic CR spectrum up to the energy ∼1017 eV. 相似文献
20.
H.S. Ahluwalia R.C. Ygbuhay 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
For the last six decades the neutron monitors have provided a continuous string of very reliable data to the heliophysics community. Although neutron monitors are not the primary source of data for the galactic cosmic rays, these data serve as a baseline reference for the data collected by the detectors on board the satellites and deep space probes, far away from earth orbit. The pressure corrected hourly data are available from the World Data Centers. These data have been used to derive deep insights pertaining to the electromagnetic states of the heliosphere and the modes of transport of energetic charged particles in the tangled interplanetary magnetic fields. We present evidence that some of the high latitude neutron monitors are undergoing long-term drifts in their baselines. In particular, we argue that there is no physical basis to justify the observed long-term downward trend in the baseline of the South Pole neutron monitor. The real reason may have to do with its maintenance at a distant location with challenging logistics and an improper normalization of its data after the 26 months break in the 1970s. 相似文献