首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper reviews the importance of inductive electric fields in explaining different magnetospheric and auroral phenomena during moderately and highly disturbed conditions. Quiet-time particle energization and temporal development of the tail structure during the substorm growth phase are explained by the presence of a large-scale electrostatic field directed from dawn to dusk over the magnetotail. Conservation of the first adiabatic invariant in the neutral sheet with a small value of the gradient in the magnetic field implies that the longitudinal energy increases at each crossing of the neutral sheet. At a certain moment, this may result in a rapid local growth of the current and in an instability that triggers the onset. During the growth phase energy is stored mainly in the magnetic field, since the energy density in the electric field is negligible compared to that of the magnetic field (ratio 1: 107). An analytical model is described in which the characteristic observations of a substorm onset are taken into account. One major feature is that the triggering is confined to a small local time sector. During moderate disturbances, the induction fields in the magnetotail are stronger by at least one order of magnitude than the average cross-tail field. Temporal development of the disturbed area results in X- and O-type neutral lines. Particles near to these neutral lines are energized to over 1 MeV energies within a few seconds, due to an effective combination of linear and betatron acceleration. The rotational property of the induction field promotes energization in a restricted area with dimensions equivalent to a few Earth's radii. The model also predicts the existence of highly localized cable-type field-aligned currents appearing on the eastern and western edges of the expanding auroral bulge. It is shown that the predictions agree with satellite observations and with the data obtained from the two-dimensional instrument networks operated in Northern Europe during the International Magnetospheric Study (IMS, 1976–79).  相似文献   

2.
The magnetotail and substorms   总被引:5,自引:0,他引:5  
The tail plays a very active and important role in substorms. Magnetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary of the tail flares more, the field strength in the tail increases, and the currents strengthen and move closer to the Earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. At the onset of the expansion phase, the stored magnetic flux is returned from the tail and energy is deposited in the magnetosphere and ionosphere. During the expansion phase of isolated substorms, the flaring angle and the lobe field strength decrease, the plasma sheet thickens and more magnetic flux crosses the neutral sheet.In this review, we discuss the experimental evidence for these processes and present a phenomenological or qualitative model of the substorm sequence. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet. In order to remove the oversupply of magnetic flux in the tail, a neutral point forms in the near earth portion of the tail. If the new reconnection rate exceeds the dayside merging rate, then an isolated substorm results. However, a situation can occur in which dayside merging and tail reconnection are in equilibrium. The observed polar cap electric field and its correlation with the interplanetary magnetic field is found to be in accord with open magnetospheric models.  相似文献   

3.
Wave-particle effects are implicit in most models of radial diffusion and energization of Van Allen belt particles; they were explicitly used in the wave turbulence model for trapped particle precipitation and trapped flux limitations by Kennel and Petschek, Cornwall and by many others. Liemohn used wave-particle interactions to work out a theory of path-integrated whistler amplification process to explain the lack of large per-hop attenuation of multiple-hop LF whistlers.Others have now used wave-particle interactions to construct theories of ELF and VLF chorus. In the present paper we shall review the observations and some of the pertinent theoretical interpretations of wave-particle effects as they relate to substorm and storm-time phenomena. If substorms develop as a result of magnetic merging, then it seems clear that wave-particle interactions in the dissipative or so-called diffusion region of the reconnection zone may be of great importance. The plasma sheet thinning and flow towards the Earth lead inevitably to the development of particle distribution functions that contain free energy in a pitch-angle anisotropy. Such free energy can be released via plasma wave instabilities. The subsequent wave-particle interactions can result in both strong and weak diffusion of particles into loss cones with consequent precipitation fluxes into the auroral zone. Ring current proton spectra also should be unstable against various plasma instabilities with consequent ring current decay and precipitations. Wave-particle interactions must play some important roles in auroral arcs, electrojets and other phenomena related to substorms. These aspects of wave-Paticle interaction will be covered  相似文献   

4.
This paper presents the consensus arrived at by the authors with respect to the contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in a sometimes unpredictable manner. Two physical processes, neither of which can be ignored, are considered to be of importance in the dispensation of the energy input from the solar wind. One of these is the driven process in which energy, supplied from the solar wind, is directly dissipated in the ionosphere with the only clearly definable delay being due to the inductance of the magnetosphere-ionosphere system. The other is the loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere as a consequence of external changes in the interplanetary medium or internal triggering processes. Although the driven process appears to be more dominant on a statistical basis in terms of solar wind-geomagnetic activity relationships, one or the other of the two above processes may dominate for any individual cases. Moreover, the two processes may operate simultaneously during a given phase of the substorm, e.g., the magnetotail may experience loading as the driven system increases in strength. Thus, in our approach, substorms are described in terms of physical processes which we infer to be operative in the magnetosphere and the terminology of the past (e.g., phases) is related to those inferred physical processes. The pattern of substorm development in response to changes in the interplanetary medium is presented for a canonical isolated substorm.Now at Max-Planck-Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, D-8046 Garching, F.R.G.  相似文献   

5.
The ion tearing mode is considered as the only mechanism capable of initiating reconnection processes in the equilibrium plasma sheet whose scale considerably exceeds the ion Larmor radius. The paper gives a brief review of linear theory of the tearing mode instability that allows the onset of its development to be determined. It is shown that the explosive growth of the tearing mode in a nonlinear stage is consistent with the dynamics of charged particle acceleration and the behaviour of the magnetic field variations and plasma flow in the magnetotail. The tail structure formed, as a result of the development of the tearing mode, is also discussed.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

6.
An overview of the general characteristics of plasmas within the Earth's magnetotail and its environs is presented. Present knowledge of the plasmas within these regions as gained via in situ measurements provides the general theme, although observations of magnetic fields, energetic particles and plasma waves are included in the discussion. Primary plasma regimes in the magnetotail are the plasma sheet, its boundary layer, the magnetotail lobes, the boundary layer at the magnetopause and the distant magnetotail. Although great progress in our understanding of these regions is evident in the literature of the past several years, many of their features remain as exciting enigmas to be resolved by future observational and theoretical investigation.  相似文献   

7.
Walker  R.  Terasawa  T.  Christon  S.P.  Angelopoulos  V.  Hoshino  M.  Lennartsson  W.  Maezawa  K.  Sibeck  D.G.  Treumann  R.A.  Williams  D.J.  Zelenyi  L. 《Space Science Reviews》1999,88(1-2):285-353
Space Science Reviews -  相似文献   

8.
Data obtained by the Ulysses magnetometer and solar wind analyzer have been combined to study the properties of magnetic holes in the solar wind between 1 and 5.4 AU and to 23° south latitude. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror mode structures created upstream of the points of observation. Those indications include: (1) For the few holes for which proton or alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all the holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion (ratio of thermal to magnetic pressure) than did the average solar wind.  相似文献   

9.
The magnetogram inversion technique (MIT) is based upon recordings of geomagnetic variations at the worldwide network of ground-based magnetometers. MIT ensures a calculation of a global spatial distribution of the electric field, currents and Joule heating in the ionosphere. Variant MIT-2 provides, additionally, continuous monitoring of the following parameters: Poynting vector flux from the solar wind into the magnetosphere (); power, both dissipated and accumulated in the magnetosphere; magnetic flux in the open tail; and the magnetotail length (l T) (distance between the dayside and nightside neutral points in the Dungey model). Using MIT-2 and data of direct measurements in the solar wind, an analysis is made of a number of substorms, and a new scenario of substorms is suggested. The scenario includes the convection model, the model with a neutral line and the model of magnetosphere-ionosphere coupling (outside the current sheet), i.e., the three known models. A brief review is given of these and some other substorms models. A new element in the scenario is the strong positive feedback in the primary generator circuit, which ensures growth of the ratio = / Aby an order of magnitude or more during the substorms. Here Ais the Pointing vector flux in the Akasofu-Perrault approximation, i.e., without the feedback taken into account. The growth of during the substorm is caused only by the feedback effect. It is assumed that the feedback arises due to an elongation of the magnetotail, i.e., a growth of l Tby a factor of (23) during the substorm.In the active phase of substorm, a part (the first active phase) has been identified, where the principal role in the energetics is played by the feedback mechanism and the external energy source (although the internal source plus reconnection inside the plasma sheet make a marked contribution). In the second active phase (expansion) the external generator (solar wind) is switched off, and the main role is now played by the internal energy source (the tail magnetic field and ionospheric wind energy).Models of DP-2 DP-1 transitions are also considered, as well as the magnetospheric substorm-solar flare analogy.  相似文献   

10.
The scenario explaining the origin of the anomalous component of cosmic rays (ACR) implies a close relation between these high energy particles and the solar wind termination shock representing their main acceleration region. Consequently, one should expect the ACR distributions in the heliosphere to reflect some information about the structure as well as the large-scale geometry of the shock. We study the influence of a non-spherically symmetric heliospheric shock on the off-ecliptic — i.e. high latitude — ACR distributions using a two-dimensional model including their anisotropic diffusion and drift in the heliospheric magnetic field as well as a solar wind flow dependent on the heliographic latitude. The model calculations are used to investigate the probability of a possible polar elongation of the heliospheric shock from observations of the distributions of the ACR at high latitudes during solar minimum conditions.  相似文献   

11.
We review important studies in the field of stratosphere-ionosphere coupling, including recent studies of wave motions of planetary waves, atmospheric tides and internal gravity waves in the atmosphere. The interrelation between stratospheric sudden warmings and winter anomaly of radio absorption, a dynamical model of stratospheric sudden warmings and some production mechanisms of intensified electron density in the D region are discussed. Other topics presented are atmospheric tides in the lower thermosphere including dynamo action, and internal gravity waves, by which we intend to explain travelling ionospheric disturbances in the F 2 region and sporadic E layer at midlatitude (wave-enhanced sporadic E). Thermospheric winds are also reviewed and wind effects on the F 2 layer are discussed. For each atmospheric event systematic observations of suitable physical quantities with proper time and spatial intervals are desirable.  相似文献   

12.
The empirical properties of the various dynamic phenomena are reviewed and interrelated with emphasis on recent observational results. The topics covered are:
  1. Introduction
  2. Aperiodic Phenomena
  3. Externally Driven Phenomena
  4. Umbral Flares
  5. Inverse Evershed Flow
  6. Internally Driven Phenomena
  7. Penumbra
  8. Penumbral Grains
  9. Evershed Flow
  10. Umbra
  11. Umbral Dots
  12. Inhomogeneity of the Umbral Magnetic Field
  13. Umbral Turbulence
  14. Oscillations and Waves
  15. Chromosphere
  16. Umbra: Oscillations and Flashes
  17. Penumbra: Running Waves and Dark Puffs
  18. Photosphere
  19. Overview
It is proposed from the observations that umbral dots and penumbral grains are essentially the same phenomenon, and that the observational goal of highest priority with respect to both the origin of the periodic phenomena and the problem of the missing heat flux is to better determine the nature of these elementary bright features.  相似文献   

13.
为了采用二维/轴对称模型来研究喷射的三维问题,拓展该模型的适用范围,从而缩短数值模拟的周期,提出了一种针对流动通道内燃料喷射作用的简化模型,即采用源项加质来近似代替喷射的质量添加。为验证这种简化方法的可行性,进行了二维模型源项加质模拟垂直喷射的对比性计算,并且和三维模型计算结果及文献中的实验结果进行了对照,验证了此种处理方法的可靠性。运用以上简化模型,对某冲压发动机进气道及燃烧室内通道处的流场,采用五组元单步反应模型进行了数值模拟,得到了各主要气动参数及组分质量分数的分布。同时,研究了燃料喷射质量流量变化对于发动机工作状态的影响并探讨了亚燃冲压发动机进气道和燃烧室匹配方面的问题。通过以上的计算,表明采用源项加质处理,二维及轴对称模型,具有较好的时效性及足够的计算精度,适合在型面设计阶段进行使用,并容易在工程应用中实现,是一种值得推荐的简化处理方法。  相似文献   

14.
K. Ohki 《Space Science Reviews》1989,51(1-2):215-228
Observational features concerning solar energetic particles are compactly reviewed with some emphasis on the spectra and time histories. Velocity dependent characteristics in the energy spectra are pointed out, and compared to the results of the interplanetary shocks. A shock drift acceleration is introduced in order to interpret the observational features, especially a very fast acceleration to MeV energies within an order of second. There is a strong evidence of the shock drift acceleration in the interplanetary shocks. When some conditions are satisfied in the corona, only one or several encounters of particles with a near perpendicular shock accelerates protons to gamma-ray emitting energies (> 10 MeV). Pre-acceleration is inevitable for any kind of acceleration mechanisms in solar flares. To fulfill the requirements from the abundance ratios between various species of accelerated ions, pre-acceleration to the same velocities before the injection into a main acceleration process turns out to be absolutely necessary.  相似文献   

15.
The interaction between a normal shock wave and a boundary layer along a wall surface in internal compressible flows causes a very complicated flow. When the shock is strong enough to separate the boundary layer, the shock is bifurcated and one or more shocks appear downstream of the bifurcated shock. A series of shocks thus formed, called “shock train”, is followed by an adverse pressure gradient region, if the duct is long enough. Thus the effect of the interaction extends over a great distance. The flow is decelerated from supersonic to subsonic through the whole interaction region. In this sense, the interaction region including the shock train in it is referred to as “pseudo-shock” in the present paper, as Crocco called it. The shock train and pseudo-shock strongly affect the performance and efficiency of various flow devices. In the present review some fundamental characteristics of the shock train and pseudo-shock are first described. Some simple predictions are made to simulate these very complicated phenomena. Pseudo-shocks appearing in various flow devices are explained. Control methods of the pseudo-shocks are also described. Finally, the current understanding of self-excited oscillation of pseudo-shock is reviewed.  相似文献   

16.
通过在飞行条件下对某型涡扇发动机端部厚度分别为1.0mm和1.5mm的分流环静压和变形量进行实时数据采集,得到了不同飞行高度、速度条件下,分流环内外壁面静压值以及分流环的变形量.结果表明:飞机在发动机全加力状态飞行时急收油门过程中,分流环内外壁面静压差值会产生急增,差值增量随飞行速度的增加而增加,分流环厚度越小,增量越大;分流环内外壁面压差是导致分流环变形的主要原因,并给出了该型分流环变形量随压差的变化关系.   相似文献   

17.
发动机叶片鸟撞击瞬态响应的数值模拟   总被引:9,自引:0,他引:9  
陈伟  关玉璞  高德平 《航空学报》2003,24(6):531-533
 简介了叶片鸟撞击瞬态响应的计算方法, 并采用接触冲击算法计算模拟了不同质量的鸟撞击单个、多个及整级叶片的瞬态响应过程。结果表明: 接触冲击算法能较为真实反映叶片鸟撞击过程; 不同质量的鸟撞击叶片时, 叶片变形与应力有较大的差异; 大质量的鸟撞击时, 必须考虑撞击区附近的局部塑性变形、叶尖位移以及叶根的局部塑性变形。研究结果对于进行我国叶片抗鸟撞击损伤设计具有重要参考价值。  相似文献   

18.
19.
The evolution of the appearance of the computer is described, and the future appearance of the personal computer is predicted. Changes to the inside of the computer are also forecast. It is suggested that computers will be the pottery of a future generation for archaeologists, allowing them to date an archaeological find  相似文献   

20.
For <bi,be, the electron and ion bounce frequencies, the response of a plasma to an externally applied electromagnetic perturbation is nonlocal. This implies, via the quasi-neutrality equation, the development of an electrostatic potential which is constant for a given magnetic field line. In the near equatorial region the corresponding potential electric field is shown to oppose the effect of the induced electric field associated with the externally applied perturbation. Thus the effect of the induced electric field is partially shielded; the total azimuthal electric field (i.e. induced plus potential) tends to be small, which explains why the radial flow velocity is slow during quasi-steady conditions prevailing during the growth phase and after the active phase. The nonlocal response of the plasma also leads to the development of a parallel current that may generate current driven Alfvén (CDA) waves, which mode convert into shear Alfvén (SA) waves. CDA/SA waves are systematically observed at early breakup; they grow very fast and produce a parallel diffusion of electrons. As soon as the diffusion time is shorter than the bounce time (d<b), the nonlocal response vanishes. Thus the shielding disappears, and an enhanced transport is restored at the rate fixed by the induced electric field alone. We show that fast flows effectively occur when CDA waves have enough power to diffuse electrons (over d<b). Electron parallel diffusion also leads to an interruption of the parallel current and therefore to a disruption of the perpendicular current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号