共查询到20条相似文献,搜索用时 15 毫秒
1.
A Coradini F. Capaccioni P. Drossart G. Arnold E. Ammannito F. Angrilli A. Barucci G. Bellucci J. Benkhoff G. Bianchini J. P. Bibring M. Blecka D. Bockelee-Morvan M. T. Capria R. Carlson U. Carsenty P. Cerroni L. Colangeli M. Combes M. Combi J. Crovisier M. C. Desanctis E. T. Encrenaz S. Erard C. Federico G. Filacchione U. Fink S. Fonti V. Formisano W. H. Ip R. Jaumann E. Kuehrt Y. Langevin G. Magni T. Mccord V. Mennella S. Mottola G. Neukum P. Palumbo G. Piccioni H. Rauer B. Saggin B. Schmitt D. Tiphene G. Tozzi 《Space Science Reviews》2007,128(1-4):529-559
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe
for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as
a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus
Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully
observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars
in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison
– using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative
of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship
with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed
to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the
comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will
be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload
of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral
bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification
of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent
of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied. 相似文献
2.
C. Carr E. Cupido C. G. Y. Lee A. Balogh T. Beek J. L. Burch C. N. Dunford A. I. Eriksson R. Gill K. H. Glassmeier R. Goldstein D. Lagoutte R. Lundin K. Lundin B. Lybekk J. L. Michau G. Musmann H. Nilsson C. Pollock I. Richter J. G. Trotignon 《Space Science Reviews》2007,128(1-4):629-647
The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma environment of comet 67P/Churyumov-Gerasimenko.
The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner
coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to
achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual
Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit
(PIU). The consortium approach allows for scientific, technical and operational coordination, and makes optimum use of the
available mass and power resources. 相似文献
3.
ISO performed a large variety of observing programmes on comets, asteroids and zodiacal light – covering about 1% of the archived
observations – with a surprisingly rewarding scientific return. Outstanding results were related to the exceptionally bright
comet Hale–Bopp and to ISO's capability to study in detail the water spectrum in a direct way. But many other results were
broadly recognised: Discovery of new molecules in comets, the studies of crystalline silicates, the work on asteroid surface
mineralogy, results from thermophysical studies of asteroids, a new determination of the asteroid number density in the main-belt
and last but not least, the investigations on the spatial and spectral features of the zodiacal light. 相似文献
4.
5.
H. Nilsson R. Lundin K. Lundin S. Barabash H. Borg O. Norberg A. Fedorov J.-A Sauvaud H. Koskinen E. Kallio P. Riihelä J. L. Burch 《Space Science Reviews》2007,128(1-4):671-695
The Ion Composition Analyzer (ICA) is part of the Rosetta Plasma Consortium (RPC). ICA is designed to measure the three-dimensional
distribution function of positive ions in order to study the interaction between the solar wind and cometary particles. The
instrument has a mass resolution high enough to resolve the major species such as protons, helium, oxygen, molecular ions,
and heavy ions characteristic of dusty plasma regions. ICA consists of an electrostatic acceptance angle filter, an electrostatic
energy filter, and a magnetic momentum filter. Particles are detected using large diameter (100 mm) microchannel plates and
a two-dimensional anode system. ICA has its own processor for data reduction/compression and formatting. The energy range
of the instrument is from 25 eV to 40 keV and an angular field-of-view of 360° × 90° is achieved through electrostatic deflection
of incoming particles. 相似文献
6.
SOHO: The Solar and Heliospheric Observatory 总被引:1,自引:0,他引:1
The Solar and Heliospheric Observatory (SOHO), together with the Cluster mission, constitutes ESA's Solar Terrestrial Science Programme (STSP), the first Cornerstone of the Agency's long-term programme Space Science — Horizon 2000. STSP, which is being developed in a strong collaborative effort with NASA, will allow comprehensive studies to be made of the both the Sun's interior and its outer atmosphere, the acceleration and propagation of the solar wind and its interaction with the Earth. This paper gives a brief overview of one part of STSP, the SOHO mission. 相似文献
7.
J. L. Burch R. Goldstein T. E. Cravens W. C. Gibson R. N. Lundin C. J. Pollock J. D. Winningham D. T. Young 《Space Science Reviews》2007,128(1-4):697-712
The ion and electron sensor (IES) is part of the Rosetta Plasma Consortium (RPC). The IES consists of two electrostatic plasma
analyzers, one each for ions and electrons, which share a common entrance aperture. Each analyzer covers an energy/charge
range from 1 eV/e to 22 keV/e with a resolution of 4%. Electrostatic deflection is used at the entrance aperture to achieve
a field of view of 90°× 360° (2.8π sr). Angular resolution is 5°× 22.5° for electrons and 5°× 45° for ions with the sector
containing the solar wind being further segmented to 5°× 5°. The three-dimensional plasma distributions obtained by IES will
be used to investigate the interaction of the solar wind with asteroids Steins and Lutetia and the coma and nucleus of comet
67P/Churyumov–Gerasimenko (CG). In addition, photoelectron spectra obtained at these bodies will help determine their composition. 相似文献
8.
Oxygen Isotopes in the Solar System 总被引:1,自引:0,他引:1
The oxygen three-isotope system has major advantages over the two-isotope systems of hydrogen, carbon, and nitrogen because
different fractionation laws govern intraplanetary and interplanetary processes. This permits discriminating between solar
nebular processes and parent-body processes. Oxygen isotopes also serve as a sensitive natural tracer for meteorite classification.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
Michael F. A’Hearn Michael J. S. Belton Alan Delamere William H. Blume 《Space Science Reviews》2005,117(1-2):1-21
The Deep Impact mission will provide the first data on the interior of a cometary nucleus and a comparison of those data with
data on the surface. Two spacecraft, an impactor and a flyby spacecraft, will arrive at comet 9P/Tempel 1 on 4 July 2005 to
create and observe the formation and final properties of a large crater that is predicted to be approximately 30-m deep with
the dimensions of a football stadium. The flyby and impactor instruments will yield images and near infrared spectra (1–5
μm) of the surface at unprecedented spatial resolutions both before and after the impact of a 350-kg spacecraft at 10.2 km/s.
These data will provide unique information on the structure of the nucleus near the surface and its chemical composition.
They will also used to interpret the evolutionary effects on remote sensing data and will indicate how those data can be used
to better constrain conditions in the early solar system. 相似文献
10.
A. Grimberg D. S. Burnett P. Bochsler H. Baur R. Wieler 《Space Science Reviews》2007,130(1-4):293-300
We discuss data of light noble gases from the solar wind implanted into a metallic glass target flown on the Genesis mission.
Helium and neon isotopic compositions of the bulk solar wind trapped in this target during 887 days of exposure to the solar
wind do not deviate significantly from the values in foils of the Apollo Solar Wind Composition experiments, which have been
exposed for hours to days. In general, the depth profile of the Ne isotopic composition is similar to those often found in
lunar soils, and essentially very well reproduced by ion-implantation modelling, adopting the measured velocity distribution
of solar particles during the Genesis exposure and assuming a uniform isotopic composition of solar wind neon. The results
confirm that contributions from high-energy particles to the solar wind fluence are negligible, which is consistent with in-situ
observations. This makes the enigmatic “SEP-Ne” component, apparently present in lunar grains at relatively large depth, obsolete.
20Ne/ 22Ne ratios in gas trapped very near the metallic glass surface are up to 10% higher than predicted by ion implantation simulations.
We attribute this superficially trapped gas to very low-speed, current-sheet-related solar wind, which has been fractionated
in the corona due to inefficient Coulomb drag. 相似文献
11.
James E. Richardson H. Jay Melosh Natasha A. Artemeiva Elisabetta Pierazzo 《Space Science Reviews》2005,117(1-2):241-267
The cratering event produced by the Deep Impact mission is a unique experimental opportunity, beyond the capability of Earth-based
laboratories with regard to the impacting energy, target material, space environment, and extremely low-gravity field. Consequently,
impact cratering theory and modeling play an important role in this mission, from initial inception to final data analysis.
Experimentally derived impact cratering scaling laws provide us with our best estimates for the crater diameter, depth, and
formation time: critical in the mission planning stage for producing the flight plan and instrument specifications. Cratering
theory has strongly influenced the impactor design, producing a probe that should produce the largest possible crater on the
surface of Tempel 1 under a wide range of scenarios. Numerical hydrocode modeling allows us to estimate the volume and thermodynamic
characteristics of the material vaporized in the early stages of the impact. Hydrocode modeling will also aid us in understanding
the observed crater excavation process, especially in the area of impacts into porous materials. Finally, experimentally derived
ejecta scaling laws and modeling provide us with a means to predict and analyze the observed behavior of the material launched
from the comet during crater excavation, and may provide us with a unique means of estimating the magnitude of the comet’s
gravity field and by extension the mass and density of comet Tempel 1. 相似文献
12.
A theory is presented for the origin of the solar wind, which is based on the behavior of the magnetic field of the Sun. The
magnetic field of the Sun can be considered as having two distinct components: Open magnetic flux in which the field lines
remain attached to the Sun and are dragged outward into the heliosphere with the solar wind. Closed magnetic flux in which
the field remains entirely attached to the Sun, and forms loops and active regions in the solar corona. It is argued that
the total open flux should tend to be constant in time, since it can be destroyed only if open flux of opposite polarity reconnect,
a process that may be unlikely since the open flux is ordered into large-scale regions of uniform polarity. The behavior of
open flux is thus governed by its motion on the solar surface. The motion may be due primarily to a diffusive process that
results from open field lines reconnecting with randomly oriented closed loops, and also due to the usual convective motions
on the solar surface such as differential rotation. The diffusion process needs to be described by a diffusion equation appropriate
for transport by an external medium, which is different from the usual diffusion coefficient used in energetic particle transport.
The loops required for the diffusion have been identified in recent observations of the Sun, and have properties, both in
size and composition, consistent with their use in the model. The diffusive process, in which reconnection occurs between
open field lines and loops, is responsible for the input of mass and energy into the solar wind.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
13.
S. A. Stern D. C. Slater J. Scherrer J. Stone M. Versteeg M. F. A’hearn J. L. Bertaux P. D. Feldman M. C. Festou Joel Wm. Parker O. H. W. Siegmund 《Space Science Reviews》2007,128(1-4):507-527
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign. 相似文献
14.
L. Bengtsson 《Space Science Reviews》2006,125(1-4):187-197
The climate response to changes in radiative forcing depends crucially on climate feedback processes, with the consequence
that solar and greenhouse gas forcing have both similar response patterns in the troposphere. This circumstance complicates
significantly the attribution of the causes of climate change. Additionally, the climate system displays a high level of unforced
intrinsic variability, and significant variations in the climate of many parts of the world are due to internal processes.
Such internal modes contribute significantly to the variability of climate system on various time scales, and thus compete
with external forcing in explaining the origin of past climate extremes. This highlights the need for independent observations
of solar forcing including long-term consistent observational records of the total and spectrally resolved solar irradiance.
The stratospheric response to solar forcing is different from its response to greenhouse gas forcing, thus suggesting that
stratospheric observations could offer the best target for the identification of the specific influence of solar forcing on
climate. 相似文献
15.
Ester Antonucci 《Space Science Reviews》2006,124(1-4):35-50
The dynamics of the solar corona as observed during solar minimum with the Ultraviolet Coronagraph Spectrometer, UVCS, on
SOHO is discussed. The large quiescent coronal streamers existing during this phase of the solar cycle are very likely composed
by sub-streamers, formed by closed loops and separated by open field lines that are channelling a slow plasma that flows close
to the heliospheric current sheet. The polar coronal holes, with magnetic topology significantly varying from their core to
their edges, emit fast wind in their central region and slow wind close to the streamer boundary. The transition from fast
to slow wind then appears to be gradual in the corona, in contrast with the sharp transition between the two wind regimes
observed in the heliosphere. It is suggested that speed, abundance and kinetic energy of the wind are modulated by the topology
of the coronal magnetic field. Energy deposition occurs both in the slow and fast wind but its effect on the kinetic temperature
and expansion rate is different for the slow and fast wind. 相似文献
16.
Traditionally modeling for space science has concentrated on developing simulations for individual components of the solar
terrestrial system. In reality these regions are coupled together. This coupling can be as simple as the driving of the magnetosphere
– ionosphere – thermosphere system by the solar wind or as a complicated as the feedback of the ionospheric conductivity and
currents on the magnetosphere. As part of the CISM project we are beginning a concentrated effort to compressively model the
entire system. This approach includes chains of models. In the first chain physics based numerical models are utilized while
in the second chain empirical models are coupled together. The first half of this paper discusses the numerical modeling approach
by highlighting the coupling of pairs of regions within the system. In the second section we present results from empirical
models which are combined to make long term forecasts of conditions in the geospace environment. It is expected that a validated
and reliable forecast model for space weather can be obtained by combining the strongest elements of each chain. 相似文献
17.
Chemical and physical processes in the outer solar nebula are reviewed. It is argued that the outer nebula was a chemically active environment with UV photochemistry and ion-molecule chemistry in its low density regions and grain-catalyzed chemistry in Jovian protoplanetary subnebulae. Presolar material was altered to greater or lesser extent by these spatially and temporally variable processes, which mimic many features of interstellar chemistry. Experiments, models, and observations are recommended to address the questions of presolar versus nebular dominance in the outer solar nebula and of how to distinguish interstellar and nebular sources of cometary volatiles. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
18.
Nicholas W. Watkins Daniel Credgington Bogdan Hnat Sandra C. Chapman Mervyn P. Freeman John Greenhough 《Space Science Reviews》2005,121(1-4):271-284
Mandelbrot introduced the concept of fractals to describe the non-Euclidean shape of many aspects of the natural world. In
the time series context, he proposed the use of fractional Brownian motion (fBm) to model non-negligible temporal persistence,
the ‘Joseph Effect’; and Lévy flights to quantify large discontinuities, the ‘Noah Effect’. In space physics, both effects
are manifested in the intermittency and long-range correlation which are by now well-established features of geomagnetic indices
and their solar wind drivers. In order to capture and quantify the Noah and Joseph effects in one compact model, we propose
the application of the ‘bridging’ fractional Lévy motion (fLm) to space physics. We perform an initial evaluation of some
previous scaling results in this paradigm, and show how fLm can model the previously observed exponents. We suggest some new
directions for the future. 相似文献
19.
The remote sensing of comets in the ultraviolet bandpass has been a valuable tool for studying the structure, composition, variability, and physical processes at work in cometary comae. By extension, these studies of comae have revealed key insights into the composition of cometary nuclei. Here we briefly review the ultraviolet studies of comets, and then take a look toward the future of such work as anticipated by the advent of several key new instruments. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
Because of its chemical and radiative properties, atmospheric ozone constitutes a key element of the Earth’s climate system.
Absorption of sunlight by ozone in the ultraviolet wavelength range is responsible for stratospheric heating, and determines
the temperature structure of the middle atmosphere. Changes in middle atmospheric ozone concentrations result in an altered
radiative input to the troposphere and to the Earth’s surface, with implications on the energy balance and the chemical composition
of the lower atmosphere. Although a wide range of ground- and satellite-based measurements of its integrated content and of
its vertical distribution have been performed since several decades, a number of uncertainties still remain as to the response
of middle atmospheric ozone to changes in solar irradiance over decadal time scales. This paper presents an overview of achieved
findings, including a discussion of commonly applied data analysis methods and of their implication for the obtained results.
We suggest that because it does not imply least-squares fitting of prescribed periodic or proxy data functions into the considered
times series, time-domain analysis provides a more reliable method than multiple regression analysis for extracting decadal-scale
signals from observational ozone datasets. Applied to decadal ground-based observations, time-domain analysis indicates an
average middle atmospheric ozone increase of the order of 2% from solar minimum to solar maximum, which is in reasonable agreement
with model results. 相似文献