首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The life support systems (LSS) for long-term missions are to use cycling-recycling systems, including biological recycling. Higher plants are the traditional regenerator of air and producer of food. They should be used in many successive generations of their reproduction in LSS.  相似文献   

2.
High closure of matter recycling is an obvious requirement for long-term life support systems (LSS). Biological species are obligate components of the LSS since physical/chemical components are not able yet to provide food for crew. However including biological species into LSS is difficult due to specific stoichiometric configuration of their inputs and outputs. Formally the problem is to estimate the ability for given set of species to provide complete closure of LSS. Two possible models of metabolism organization can be considered: rigid and flexible ones. Stoichiometric analyses showed that the rigid metabolism case is not typical and takes place with very specific requirements. The flexible metabolic model can be applied to describing wide range of systems. Some formal indications of ability to provide complete closure and stationarity of LSS state are considered in the paper. These indications establish some constraints on the form of mathematical models intended to describe artificial and natural ecological systems.  相似文献   

3.
Due to high resupply costs, especially for long-duration stays in space habitats beyond low earth orbit, future manned space missions will require life support systems (LSS) with a high degree of regenerativity. Possible ways to overcome the waste of resources and to save on resupply mass are therefore of major interest for the development of next generation environmental control and life support systems.  相似文献   

4.
Using conventional means of process development, it would take decades and hundreds of millions of dollars to develop technology for recycling of water and solid waste for lunar missions within the next thirty years. Since we anticipate neither that amount of time nor level of funding, new methodologies for developing life support systems (LSS) technologies are essential. Computerized modeling and simulation (CMAS) is a tool that can greatly reduce both the time and cost of technology development. By CMAS, we refer to computer methods for correlating, storing and retrieving property data for chemical species and for solving the phenomenological equations of physical/chemical processes (i.e., process conditions based on properties of materials and mass and energy balances, equipment sizing based on rate processes and the governing equations for unit operations). In particular, CMAS systems can be used to evaluate a LSS process design with minimal requirements for laboratory experimentation. A CMAS model using ASPEN PLUS is presented for a vapor compression distillation (VCD) system designed for reclaiming water from urine.  相似文献   

5.
Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.  相似文献   

6.
For extended duration missions in space the supply of basic life-supporting ingredients represents a formidable logistics problem. Storage volume and launch weight of water, oxygen and food in a conventional non-regenerable life support system are directly proportional to the crew size and the length of the mission. In view of spacecraft payload limitations this will require that the carbon, or food, recycling loop, the third and final part in the life support system, be closed to further reduce logistics cost. This will be practical only if advanced life support systems can be developed in which metabolic waste products are regenerated and food is produced.

Biological Life Support Systems (BLSS) satisfy the space station environmental control functions and close the food cycle. A Biological Life Support System has to be a balanced ecological system, biotechnical in nature and consisting of some combination of human beings, animals, plants and microorganisms integrated with mechanical and physico-chemical hardware.

Numerous scientific space experiments have been delineated in recent years, the results of which are applicable to the support of BLSS concepts. Furthermore ecological life support systems have become subject to intensified studies and experiments both in the U.S. and the U.S.S.R. The Japanese have also conducted detailed preliminary studies.

Dornier System has in recent years undertaken an effort to define requirements and concepts and to analyse the feasibility of BLSS for space applications. Analyses of the BLSS energy-mass relation have been performed, and the possibilities to influence it to achieve advantages for the BLSS (compared with physico-chemical systems) have been determined. The major problem areas which need immediate attention have been defined, and a programme for the development of BLSS has been proposed.  相似文献   


7.
8.
As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass on longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources.  相似文献   

9.
Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H2, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.  相似文献   

10.
Bioregenerative life support systems (BLSS) being considered for long duration space missions will operate with limited resupply and utilize biological systems to revitalize the atmosphere, purify water, and produce food. The presence of man-made materials, plant and microbial communities, and human activities will result in the production of volatile organic compounds (VOCs). A database of VOC production from potential BLSS crops is being developed by the Breadboard Project at Kennedy Space Center. Most research to date has focused on the development of air revitalization systems that minimize the concentration of atmospheric contaminants in a closed environment. Similar approaches are being pursued in the design of atmospheric revitalization systems in bioregenerative life support systems. in a BLSS one must consider the effect of VOC concentration on the performance of plants being used for water and atmospheric purification processes. In addition to phytotoxic responses, the impact of removing biogenic compounds from the atmosphere on BLSS function needs to be assessed. This paper provides a synopsis of criteria for setting exposure limits, gives an overview of existing information, and discusses production of biogenic compounds from plants grown in the Biomass Production Chamber at Kennedy Space Center.  相似文献   

11.
Space-based life support systems which include ecological components will rely on sophisticated hardware and software to monitor and control key system parameters. Autonomous closed artificial ecosystems are useful for research in numerous fields. We are developing a bioreactor designed to study both microbe-environment interactions and autonomous control systems. Currently we are investigating N-cycling and N-mass balance in closed microbial systems. The design features of the system involve real-time monitoring of physical parameters (e.g. temperature, light), growth solution composition (e.g. pH, NOx, CO2), cell density and the status of important hardware components. Control of key system parameters is achieved by incorporation of artificial intelligence software tools that permit autonomous decision-making by the instrument. These developments provide a valuable research tool for terrestrial microbial ecology, as well as a testbed for implementation of artificial intelligence concepts. Autonomous instrumentation will be necessary for robust operation of space-based life support systems, and for use on robotic spacecraft. Sample data acquired from the system, important features of software components, and potential applications for terrestrial and space research will be presented.  相似文献   

12.
For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils.  相似文献   

13.
Key factors of ecosystem functioning are of the same nature for artificial and natural types. An hierarchical approach gives the opportunity for estimation of the quantitative behavior of both individual links and the system as a whole. At the organismic level we can use interactions of studied macroorganisms (man, animal, higher plant) with selected microorganisms as key indicating factors of the organisms immune status. The most informative factor for the population/community level is an age structure of populations and relationships of domination/elimination. The integrated key factors of the ecosystems level are productivity and rates of cycling of the limiting substances. The key factors approach is of great value for growth regulations and monitoring the state of any ecosystem, including the life support system (LSS)-type.  相似文献   

14.
Ground-based experiments at RF SSC-IBMP RAS (State Science Center of Russian Federation--Institute of Biomedical Problems of Russian Academia of Science) were aimed at overall studies of a human-unicellular algae-mineralization LSS (life support system) model. The system was 15 m3 in volume. It contained 45 L of algal suspension with a dry substance density of 10-12 g per liter; water volume, including the algal suspension, was 59 L. More sophisticated model systems with partial substitution of unicellular algae with higher plates (crop area of 15 m2) were tested in three experiments from 1.5 to 2 months in duration. The experiments demonstrated that LSS employing the unicellular algae play not only a macrofunction (regeneration of atmosphere and water) but also carry some other functions (purification of atmosphere, formation of microbial cenosis etc.) providing an adequate human environment. It is also important that functional reliability of the algal regenerative subsystem is secured by a huge number of cells able, in the event of death of a part of population, to recover in the shortest possible time the size of population and, hence, functionality of the LSS autotrophic component. For a long period of time a Martian crew will be detached from Earth's biosphere and for this reason LSS of their vehicle must be highly reliable, robust and redundant. One of the approaches to LSS redundancy is installation of two systems with different but equally efficient regeneration technologies, i.e. physical-chemical and biological. At best, these two systems should operate in parallel sharing the function of regeneration of the human environment. In case of failure or a sharp deterioration in performance of one system the other will, by way of redundancy, increase its throughput to make up for the loss. This LSS design will enable simultaneous handling of a number of critical problems including adequate satisfaction of human environmental needs.  相似文献   

15.
Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.  相似文献   

16.
The parallels between the challenges facing bioregenerative life support in artificial closed ecological systems and those in our global biosphere are striking. At the scale of the current global technosphere and expanding human population, it is increasingly obvious that the biosphere can no longer safely buffer and absorb technogenic and anthropogenic pollutants. The loss of biodiversity, reliance on non-renewable natural resources, and conversion of once wild ecosystems for human use with attendant desertification/soil erosion, has led to a shift of consciousness and the widespread call for sustainability of human activities. For researchers working on bioregenerative life support in closed systems, the small volumes and faster cycling times than in the Earth's biosphere make it starkly clear that systems must be designed to ensure renewal of water and atmosphere, nutrient recycling, production of healthy food, and safe environmental methods of maintaining technical systems. The development of technical systems that can be fully integrated and supportive of living systems is a harbinger of new perspectives as well as technologies in the global environment. In addition, closed system bioregenerative life support offers opportunities for public education and consciousness changing of how to live with our global biosphere.  相似文献   

17.
Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. We report experiments in which cultures of the algae Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments we tested hydrolyzed waste biomass from these same algae to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.  相似文献   

18.
Planetary protection issues and the future exploration of Mars.   总被引:1,自引:0,他引:1  
A primary scientific theme for the Space Exploration Initiative (SEI) is the search for life, extant or extinct, on Mars. Because of this, concerns about Planetary Protection (PP), the prevention of biological cross-contamination between Earth and other planets during solar system exploration missions, have arisen. A recent workshop assessed the necessity for, and impact of, PP requirements on the unmanned and human missions to Mars comprising the SEI. The following ground-rules were adopted: 1) information needed for assessing PP issues must be obtained during the unmanned precursor mission phase prior to human landings; 2) returned Mars samples will be considered biologically hazardous until proven otherwise; 3) deposition of microbes on Mars and exposure of the crew to Martian materials are inevitable when humans land; and, 4) human landings are unlikely until it is demonstrated that there is no harmful effect of Martian materials on terrestrial life forms. These ground-rules dictated the development of a conservative PP strategy for precursor missions. Key features of the proposed strategy include: 1) for prevention of forward contamination, all orbiters will follow Mars Observer PP procedures for assembly, trajectory, and lifetime. All landers will follow Viking PP procedures for assembly, microbial load reduction, and bioshield; and, 2) for prevention of back contamination, all sample return missions will have PP requirements which include fail-safe sample sealing, breaking contact chain with the Martian surface, and containment and quarantine analysis in an Earth-based lab. In addition to deliberating on scientific and technical issues, the workshop made several recommendations for dealing with forward and back contamination concerns from non-scientific perspectives.  相似文献   

19.
Functional, regulatory and indicator features of microorganisms in development and functioning of the systems and sustaining stability of three man-made ecosystem types has been studied. 1) The functional (metabolic) feature was studied in aquatic ecosystems of biological treatment of sewage waters for the reducer component. 2) The regulatory feature of bacteria for plants (producer component) was studied in simple terrestrial systems "wheat plants-rhizospheric microorganisms-artificial soil" where the behavior of the system varied with activity of the microbial component. For example with atmospheric carbon dioxide content elevated microbes promote intensification of photosynthesis processes, without binding the carbon in the plant biomass. 3) The indicator feature for the humans (consumer component) was studied in Life Support Systems (LSS). High sensitivity of human microflora to system conditions allowed its use as an indicator of the state of both system components and the entire ecosystem. Grant numbers: N99-04-96017, N15.  相似文献   

20.
Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support System (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions.

Six representative missions were selected for study from those included in NASA planning studies. The selected missions ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper presents the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号