共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
发动机状态监控和故障诊断系统的研究 总被引:1,自引:0,他引:1
本文介绍了由北京飞机维修工程公司、北京航空航天大学、中国民航学院和东方航空公司4个单位研制的 EMD(发动机状态监控和故障诊断)系统。该系统自1990年和1991年先后在国际航空公司、东方航空公司的 JT9D 和CF6等40台发动机上运行,获得了很好的结果。 相似文献
3.
本文介绍的系统,通过对滑油中的磨粒形态进行铁谱显微图像自动识别的方法监测、诊断机械设备的磨损状态和磨损类故障,并辅以光谱分析实现故障定位。本文介绍了系统的组成特点和状态监测、故障诊断、故障定位、趋势预测以及专家系统开发等系统的诊断技术原理。 相似文献
4.
《燃气涡轮试验与研究》2013,(3):38-42
针对发动机转子的多种故障模式,提出了基于排列组合熵的SVM故障诊断方法。利用转子实验台,模拟了转子正常、转子不平衡、转子不对中、动静碰磨和基座松动5种典型振动模式,并使用振动传感器采集多路振动数据。计算振动数据的排列组合熵并将其作为故障特征向量,对特征向量样本集进行多级SVM分类诊断,并运用小波包能量特征提取方法提取信号特征。实例计算与结果对比表明,本文方法的正确率要高于基于小波包能量提取特征的SVM分类诊断方法,在提取转子振动信号的特征向量及在小样本下的故障分类诊断等方面,具有可行性和有效性。 相似文献
5.
研究了基于机匣测点信号进行航空发动机滚动轴承故障诊断的灵敏性问题.首先利用两个带机匣的航空发动机转子试验器进行了冲击响应试验,比较了滚动轴承处冲击激励引起的轴承座测点响应和机匣测点响应的差别;然后利用这两个带机匣的转子试验器进行了滚动轴承故障模拟试验,详细对比分析了轴承座测点信号和机匣测点信号的时域波形、频谱和小波包络谱.结果表明:当滚动轴承和机匣的连接刚度较小时,故障滚动轴承的振动信号传递到机匣上时会产生很大的衰减,然而利用传统的基于小波包变换的包络解调方法仍然可以很好地诊断出外圈故障和内圈故障,对于滚动体故障的诊断效果略差.研究结果对于实际中基于机匣测点信号进行航空发动机滚动轴承故障诊断提供了试验依据. 相似文献
6.
7.
针对航空发动机中介轴承故障信号难于识别的问题,提出了1种融合k NN、SVM、CART、RF及GBDT 5种算法的会诊决策融合模型。基于中介轴承故障模拟试验台开展某型航空发动机中介轴承故障试验验证。采用EMD算法对采集的振动故障信号进行分解,提取IMF分量的模糊熵作为故障特征。利用建立的会诊模型对中介轴承内环故障、内环-滚动体耦合故障、正常、滚棒剥落、滚棒划伤5种不同状态进行识别。试验研究表明:会诊模型的故障诊断准确率高达92.5%,并表现出良好的泛化能力。 相似文献
8.
基于过程功率谱熵SVM的转子振动故障诊断方法 总被引:2,自引:4,他引:2
针对旋转机械振动过程的复杂性和振动故障产生的随机性以及振动故障样本获取难的问题,在信息熵理论的基础上,融合了支持向量机(SVM)小样本、全局性和泛化性好的优点,提出了过程功率谱信息熵(功率谱熵)SVM的故障诊断方法。结合转子实验台,得到了4种典型振动故障在多测点多转速下的数据,通过计算提取了其功率谱熵特征值作为故障样本,即故障向量,并建立SVM诊断模型,对转子振动故障的类别、严重程度和部位识别诊断,验证了该方法在转子振动故障诊断方面效果良好。 相似文献
9.
基于自适应滑模观测器的航空发动机故障诊断 总被引:2,自引:0,他引:2
为解决现有航空发动机基于模型的在线故障诊断方法存在对模型精度要求高等的问题,利用滑模方法设计一种自适应滑模观测器对航空发动机进行在线故障重构、诊断与隔离。对传感器故障和执行机构故障分别设计了重构算法,针对两者重构故障的特点提出了判断逻辑,讨论了设计参数对于观测效果与抖振的影响。 Matlab/Simulink仿真结果显示,重构的故障与实际故障基本吻合,对故障的诊断、隔离、定位具有良好效果,并对环境不确定性具有优良的鲁棒性。 相似文献
10.
基于NN-ELM的航空发动机燃油系统执行机构故障诊断 总被引:2,自引:1,他引:2
提出了一种航空发动机执行机构及其传感器单一故障诊断及定位方法.首先通过执行机构模型判断是否发生故障,然后运用发动机逆模型对故障进行定位.基于离线训练BP(back propagation)神经网络建立执行机构模型,根据某半物理仿真试验台的测试数据训练网络参数.提出离线训练和在线训练相结合的极端学习机(ELM)算法建立发动机逆模型,使网络在初始时刻就具有诊断能力,工作过程中具有适应能力,且在线训练过程采用阈值判别法筛选训练样本,减小了在线训练时间,提高了逆模型的实时性.以某型发动机燃油系统执行机构为例的设计和仿真结果表明:该诊断系统能够准确地对发动机在稳态和动态工况以及蜕化状态下的执行机构及其传感器单一故障进行准确诊断和定位,具有很好的实时性. 相似文献
11.
12.
航空发动机故障诊断方程的求解及应用 总被引:3,自引:0,他引:3
用换算系数方法建立了基线模型,分析了测量参数偏差的计算方法,重点介绍了发动机故障诊断系统中故障方程的求解方法,并应用发动机试车数据对此进行了求解检验,结果表明故障诊断方程的求解方法可行。 相似文献
13.
基于云关联度的航空发动机传感器、部件故障识别系统设计 总被引:3,自引:0,他引:3
针对灰色关联度方法用于发动机故障诊断精度低的问题,结合云理论和关联度分析方法,提出了云关联度方法,利用“云滴”能够反映映射的模糊性和随机性与整体“形状”变化分布这一特性,克服数据挖掘的模糊性和随机性问题,采用综合隶属度方法能够充分对数据进行挖掘,最终计算出云关联度.为了实现航空发动机传感器、部件单一故障的实时识别和诊断,在分析航空发动机传感器故障和部件故障特点的基础上,利用云关联度方法,设计了航空发动机传感器、部件故障的识别系统.仿真结果表明该方法不仅能够实时正确区分航空发动机传感器、部件故障,还能准确诊断出故障发生的传感器或者部件的位置,有效地改善了航空发动机故障诊断能力. 相似文献
14.
基于融合信息熵距的转子裂纹-碰摩耦合故障诊断方法 总被引:1,自引:2,他引:1
针对转子系统的裂纹-碰摩耦合故障,提出了一种基于融合信息熵距的转子振动故障诊断方法.利用转子实验台模拟转子系统裂纹故障、碰摩故障及裂纹-碰摩耦合故障,并采集三种典型故障的振动加速度信号.利用时域的奇异谱熵、频域的功率谱熵、时-频域的小波能谱熵以及小波空间特征谱熵,计算融合信息熵距实现故障诊断.实例研究表明:这四种信息熵形成了综合评价转子振动状态的特征指标,多测点、多转速下的信息熵距曲线较好地区分了单一故障和耦合故障,有效地提高了转子振动故障诊断的准确性.测试信号与其对应的振动故障之间的信息熵距最小,信息熵距曲线位于坐标轴的最下方,达到了诊断单一故障和耦合故障的目的. 相似文献
15.
研究了滚动轴承故障诊断单一故障信号的局限性和故障特征的非线性,从信息融合的理论出发,利用非线性动力学参数熵作为特征,提出了基于经验模态分解(EMD)熵特征融合的方法来解决滚动轴承故障诊断问题.首先将原始信号进行EMD,利用EMD的自适应多分辨率的特点计算EMD得到的固有模态函数(IMF)信号的多种熵值,然后采用核主元分析(KPCA)对提取的状态特征进行信息融合,从而得到互补的特征,最后将提取的融合特征通过支持向量机(SVM)进行故障诊断.滚动轴承故障诊断实验表明:该方法结合了EMD、信息熵理论和KPCA强大的非线性处理能力的特点,可以进行滚动轴承故障诊断. 相似文献
16.
17.
针对航空发动机中介轴承故障信号难于识别的特点,提出了一种深度梯度提升模型(Deep-GBM)对振动信号特征进行逐层学习以提高分类模型的准确率。开展某型航空发动机中介轴承故障模拟实验,并采用经验模式分解(EMD)方法对采集的振动信号进行分解,提取内蕴模式函数(IMF)分量非线性动力学参数样本熵作为原始故障特征。采用Deep-GBM对中介轴承内环故障、内环和滚动体综合故障、正常、滚棒剥落、滚棒划伤五种不同状态进行识别。实验结果表明,所提出的Deep-GBM故障诊断准确率达到87%,相对于传统的机器学习模型准确率最高提升了28%,并具有良好的泛化能力。 相似文献
18.
基于动态云BP网络的液体火箭发动机故障诊断方法 总被引:2,自引:1,他引:2
将云模型与BP(back propagation)神经网络以串联方式有机结合,首先利用云变换方法进行网络的结构辨识和云模型的特征提取,同时通过在输入层引入单位延时环节描述发动机工作过程动态特性,研究提出了基于动态云BP网络的液体火箭发动机故障诊断方法.结合实际试车数据的验证结果表明,该方法能够准确识别发动机已有的3种故障模式,通过在试车数据中添加0期望、0.2标准差的随机噪声的方法来模拟环境噪声和测试过程中产生的随机噪声,根据持续性原则,方法仍能够正确进行故障检测与分类.方法单步运行时长为1.124×10-4s,完全能够满足实时性要求. 相似文献
19.
转子振动故障的小波能谱熵SVM诊断方法 总被引:5,自引:2,他引:5
融合小波能谱熵和支持向量机(SVM)的特点,提出了基于小波能谱熵的SVM故障诊断方法.利用转子试验台对转子典型振动故障进行模拟并采集振动数据,提取其振动信号的小波能谱熵作为特征向量,通过样本训练建立了转子在各种典型振动故障状态下的SVM模型和多类分类器,进而实现了对未知转子振动故障的识别.实际应用表明,提出的转子振动故障诊断方法是可行和有效性的. 相似文献
20.
基于支持向量机的航空发动机整机振动故障诊断技术研究 总被引:4,自引:1,他引:4
支持向量机是采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的一种新型机器学习方法,由于它出色的学习分类能力和推广能力,广泛地应用于模式识别和函数拟合中。针对某型航空发动机整机振动过大的现象,提出了一种基于支持向量机(SVM)的整机振动故障诊断方法。首先介绍了SVM理论,然后根据SVM学习方法的结构风险最小化原则,对某型航空发动机已知的整机振动故障模式数据进行了训练和预测,并建立了基于SVM的航空发动机整机振动故障诊断模型。最后通过对已有故障模式进行诊断预测,证明该方法在航空发动机整机振动故障诊断方面具有良好效果。 相似文献