首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique for suppressing second-time-around radar returns using pulse-repetition interval (PRI) modulation is presented and analyzed. It is shown that a staggered PRI radar system can offer considerable improvement over a nonstaggered radar system in rejecting second-time-around returns which cause false alarms. This improvement is a function of detector implementation (noncoherent integrator or binary integrator), the number of staggered PRIs, the quiescent false alarm number, the Swerling number of the false return, the transmitted signal power, the second-time-around noise power, and the quiescent noise power of the radar. Small changes in transmitted signal power can be traded off with the quiescent false alarm number to suppress the bogus return significantly. In addition, for a noncoherent integrator, all other parameters being equal, if the second-time-around return is a Swerling case II or IV target, then there is an optimum number of staggered PRIs that can be chosen to minimize the likelihood of its detection. It is also shown that the binary integrator significantly reduces the number of second-time-around return detections when compared with the noncoherent integrator. However, there is an accompanying loss of detection  相似文献   

2.
An equalization technique is described suitable for operation in a chirp radar system in which the signal is transmitted over a channel dominated by phase nonlinearities. It is shown that the system is easily implementable, and an analysis of system performance will be presented.  相似文献   

3.
4.
Statistical models for the density of strong scatterers detected in high resolution radar images of rural terrain are presented. The probability distribution of the density of these natural terrain detections was found to be negative binomial. The variance of the negative binomial depended strongly on the window size used to measure the density. This dependence indicates that these detections, like those of a Poisson process, are locally uncorrelated, but have a slowly varying mean density whose correlation distance is 1 km or more. Negative binomial parameters were computed using over 200 km2 of terrain image for densities measured using windows sized from 75 m × 75 m to 375 m × 375 m. Average terrain detection densities of 10-3 and 10-4 per resolution cell were evaluated on images with resolutions of 7 and 28 ft.  相似文献   

5.
A new test method to measure the amplitude noise and phase noise in both CW and pulsed CW signals of a Ku-band pulsed Doppler radar is described. These noises are measured in a simulated environment of radar operation; thus the test results may give direct information to determine radar subclutter visibility. In comparison with the conventional noise test method, this new method not only gives more meaningful results but also can obtain results much faster in testing. Actual test system design is described by block diagrams and theoretical analysis. A method to determine approximate frequency jitter in a transmitter signal is also described.  相似文献   

6.
机载气象雷达回波信号仿真系统   总被引:1,自引:0,他引:1  
设计了一个机载气象雷达回波信号仿真系统,可用于高保真雷达回波信号的生成与演示。基于高保真风场建模数据,依照真实机载气象雷达的扫描方式初始化仿真参数,对风场数据进行机载气象雷达回波仿真,得到了可靠的仿真数据,并对可靠性进行验证。该系统采用C#与Matlab联合编程的方法进行实现,可实现的功能包括各种气象目标在不同模式下的雷达回波仿真,雷达回波数据正确性的验证及展示。得到的信号可为机载气象雷达信号处理和数据处理算法的开发提供数据支持。  相似文献   

7.
Space-based radar (SBR) is capable of providing flexible wide-area coverage of air, land, and sea targets. Numerous studies have been carried out in the United States and Canada in recent years to investigate different concepts for SBR. The design of a suitable radar signal processor (RSP) is challenging due to the effects caused by the moving platform on target integration and clutter spectral spread. A candidate RSP is described that uses a corporate fed array (CFA) antenna as its primary radar sensor. The algorithmic definitions of the signal processing functions are provided; the relationships between these functions and the reasons for their location in the signal processing chain are also discussed. In addition, techniques for reducing the computational requirements are also presented  相似文献   

8.
One of the best known weakness of radar sensors in defense and security applications is the necessity to radiate a signal, which can be detected by the target, so being possible (easy in fact) that the target is alerted about the presence of a radar before the radar is alerted about the presence of a target. In this context, Low Probability of Interception (LPI) Radars try to use signals that are difficult to intercept and/or identify. Spread spectrum signals are strong candidates for this application, and systems using special frequency or polyphase modulation schemes are being exploited. Frequency hopping, however, has not received much attention. The typical LPI radar at this moment of the technology is a CW-LFM radar. The simplicity of the technology is its best point. Polyphase codes, on the other hand have the inherent advantage of high instantaneous bandwidth regardless of observation time. But the complexity of the hardware is also higher. FH signals have traditionally been considered of lower performance but higher complexity, due to the difficulties to compensate the individual dopplers for the individual range cells in the receiver. One important point is that an FH radar must be clearly distinguished from an agile frequency radar. In the latter, a pulsed signal is transmitted using different frequencies from pulse to pulse. In an FH radar the frequency changes must be during the pulse. In fact, in an LPI FH radar, a CW frequency hopped signal is used. A radar system concept is proposed in which it shows how these problems can be overcome in a tracking application. Also, the signal format is analyzed under the scope of future decade digital interceptors, showing that, in fact, this kind of signal exhibits improvement in some performances and requires a hardware that is only slightly more complex than that needed for CW-LFM systems  相似文献   

9.
The history of development of automotive radars in different countries since 1972 is described using a short comparison of radar types. The authors indicate the planning of introduction of car radars in the near future according to information supplied by car companies. The purpose of the development of an automotive radar was to test different signal processing procedures both for distance and Doppler evaluation and also for a digital wavefront reconstruction to find out the angle position of a target. The block diagram, the main properties, the technical data of the radar system, the used antennas and the multiplexing of transmitting antennas is described. Finally some experimental results have been obtained under real traffic conditions  相似文献   

10.
Radar target probing and measurement are challenging tasks for Radio Frequency Simulation (RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving (ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.  相似文献   

11.
Ultra-wideband radar and random signal radar are two types of newly-developed radar systems. This paper introduces the special advantages of the combination of ultra-wideband technology and random signal radar to the international radar community. It shows that these two radar systems have a very close relationship in nature and can gain significant benefits from each other. It can be anticipated that the random signal modulated waveform will open many potential possibilities for the applications of ultra-wideband radar systems to civilian operating environments.  相似文献   

12.
A flexible test bed radar architecture is described which includes an integrated RF electronics package that can support multiple radar applications, including surveillance, fire control, target acquisition, and tracking. This type of architecture can significantly reduce the cost, power, size, and weight of electronics on future weapon delivery platforms. The Army Research Laboratory (ARL) is developing technology to support multimode radar requirements. These requirements include the detection and location of moving or stationary low radar cross section targets in heavy ground clutter and the classification and/or recognition of these targets. We address these requirements with commercial-off-the-shelf (COTS) products and the integration of several enabling technologies. The test bed radar includes a direct digital synthesizer (DDS) for frequency-diverse waveform generation, a flexible wideband transceiver for bandwidth extension and frequency translation, and an open architecture signal processor with embedded wideband analog-to-digital converters for real-time acquisition and processing. Efficient signal processing algorithms have been developed to demonstrate multimode radar capability. This paper discusses the various subassemblies, algorithm efficiency, and field experiment results  相似文献   

13.
The improvements that can be achieved in low-angle radar by using a sampled aperture radar (SAMPAR) and a maximum likelihood (ML) algorithm are discussed. The SAMPAR system described is unique in that it has a wide-ranging multifrequency capability. The ML technique is also unique because its estimation is based on the use of a highly refined signal model. It is shown, by using both simulated data and real data, that this combination, i.e., a SAMPAR system and the modified ML algorithm, provides a multiple signal resolution that exceeds any reported in the open literature. The measured data used in this study were recorded using a 32-element sampled aperture antenna on an over-water path  相似文献   

14.
一种半实物雷达仿真测试系统的设计与实现   总被引:1,自引:1,他引:0       下载免费PDF全文
雷达半实物仿真是通过微电子技术、计算机技术和信号处理技术等各种技术来复现雷达信号的产生、传递等动态过程,作为雷达系统测试的有效手段,半实物雷达在雷达系统的研制和调试过程中具有重要作用,半实物雷达仿真测试更是系统功能实现的关键环节。文章基于半实物雷达系统对射频信号发生模块、试验数据采集模块、数据回放模块进行结构与参数的设计,最终完成了各个模块的开发与集成,实现了半实物雷达仿真测试系统的设计。  相似文献   

15.
Sensors like radar or sonar usually produce data on the basis of a single frame of observation: target detections. The detection performance is described by quantities like detection probability Pd and false alarm density f. A different task of detection is formation of tracks of targets unknown in number from data of multiple consecutive frames of observation. This leads to quantities which are of a higher level of abstraction: extracted tracks. This again is a detection process. Under benign conditions (high Pd, low f and well separated targets) conventional methods of track initiation are recommended to solve a simple task. However, under hard conditions the process of track extraction is known to be difficult. We here concentrate on the case of well separated targets and derive an optimal combinatorial method which can be used under hard operating conditions. The method relates to MHT (multiple hypothesis tracking), uses a sequential likelihood ratio test and derives benefit from processing signal strength information. The performance of the track extraction method is described by parameters such as detection probability and false detection rate on track level, while Pd and f are input parameters which relate to the signal-to-noise interference ratio (SNIR), the clutter density, and the threshold set for target detection. In particular the average test lengths are analyzed parametrically as they are relevant for a user to estimate the time delay for track formation under hard conditions  相似文献   

16.
A multipath data association tracker for over-the-horizon radar   总被引:3,自引:0,他引:3  
A new algorithm, multipath probabilistic data association (MPDA), for initiation and tracking in over-the-horizon radar (OTHR) is described. MPDA is capable of exploiting multipath target signatures arising from discrete propagation modes that are resolvable by the radar. Nonlinear measurement models exhibiting multipath target signatures in azimuth, slant range, and Doppler are used. Tracking is performed in ground coordinates and therefore depends on the provision of estimates of virtual ionospheric heights to achieve coordinate registration. Although the propagation mode characteristics are assumed to be known, their correspondence with the detections is not required to be known. A target existence model is included for automatic track maintenance. Numerical simulations for four resolvable propagation modes are presented that demonstrate the ability of the technique to initiate and maintain track at probabilities of detection of 0.4 per mode in clutter densities for which conventional probabilistic data association (PDA) has a high probability of track loss, and suffers from track bias. A nearest neighbor version of MPDA is also presented  相似文献   

17.
A synthetic vision system (SVS) is described for aid in landing aircraft in poor weather conditions. The system consists of a scanning millimeter wave radar, heads-up display and real-time signal processing hardware. A suite of fast image processing algorithms are used for enhancing and displaying of the imagery. The system has been tested in number of tower and flight demonstration during actual adverse weather conditions. The significance of the work is in both system demonstration of the overall concept and the novelty of its signal processing algorithms  相似文献   

18.
An update of a phased array radar project with the experimental system ELRA (electronic steerable radar) is given with respect to the extended and improved possibilities for performing measurements and evaluations for different types of radar operation. The variability of waveforms for solid-state transmitters is described. Flexible control of multifunction operation with various search and localization tasks is achieved with a network of microcomputers. Different means of signal processing are used for target detection and estimation. The active receiving array is divided into subarrays, and offers digital beamforming for pattern shaping and adaptive jammer suppression. Experimental results are presented  相似文献   

19.
Radar systems were initially limited to military applications, but today most people encounter radar applications everyday. Given the broad range of applications, a variety of radar types and technologies have emerged to meet unique needs. This paper discusses about the latest advances on system performance and testing of radar systems. When performing characterization of a radar receiver design, a variety of signals are required to accurately recreate the operational environment. This paper will review the test signal environment needed for evaluation of various modern radar systems. Performance considerations in terms of signal source fidelity and spectral purity will also be investigated.  相似文献   

20.
Knowledge-based system for multi-target tracking in a littoral environment   总被引:1,自引:0,他引:1  
The paper addresses how to efficiently exploit the knowledge-base (KB), e.g. environmental maps and characteristics of the targets, in order to gain improved performance in the tracking of multiple targets via measurements provided by a ship-borne radar operating in a littoral environment. In this scenario, the nonhomogeneity of the surveillance region makes the conventional tracking systems (not using the KB) very sensitive to false alarms and/or missed detections. It is demonstrated that an effective use of the KB can be exploited at various levels of the tracking algorithms so as to significantly reduce the number of false alarms, missed detections, and false tracks and improve true target track life. The KB is exploited at two different levels. First, some key parameters of the tracking system are made dependent upon the track location, e.g., sea, land, coast, meteo zones (i.e., zones affected by meteorological phenomena) etc. Second, modifications are introduced to cope with a priori identified regions nit hi high clutter density (e.g. littoral areas, roads, meteo zones etc.). To evaluate the behavior of the proposed knowledge-based tracking systems, extensive results are presented using both simulated and real radar data  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号