首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
尹洁昕  王鼎  吴瑛  刘瑞瑞 《航空学报》2018,39(2):321338-321338
针对直达(LOS)与非直达(NLOS)环境中的定位问题,提出了一种波形已知条件下的单阵地多目标直接定位(DPD)算法。该算法针对发射时间已知和未知两种情况,利用多径信号到达角度与时延关于障碍物(或反射体)、观测站与目标位置参数的数学关系,建立了三维目标位置的最大似然(ML)函数,无需估计测量参数,避免了传统两步定位方法所需的非直达径识别与数据关联。为了克服多目标定位中的高维非线性优化问题,该算法利用独立波形信息将多目标定位解耦为对各个目标单独求解。通过对目标函数有效近似,算法在发射时间已知和未知两种情况下均仅需三维网格搜索,比相应的两步定位方法具有更低的计算量。此外,基于多径定位场景,推导了发射时间已知和未知两种情况下的位置估计克拉美罗界(CRB)。仿真结果表明:算法的定位性能能够逼近相应的克拉美罗界,比传统两步定位方法和子空间直接定位算法具有更高的定位精度。  相似文献   

2.
The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment.  相似文献   

3.
The improvements that can be achieved in low-angle radar by using a sampled aperture radar (SAMPAR) and a maximum likelihood (ML) algorithm are discussed. The SAMPAR system described is unique in that it has a wide-ranging multifrequency capability. The ML technique is also unique because its estimation is based on the use of a highly refined signal model. It is shown, by using both simulated data and real data, that this combination, i.e., a SAMPAR system and the modified ML algorithm, provides a multiple signal resolution that exceeds any reported in the open literature. The measured data used in this study were recorded using a 32-element sampled aperture antenna on an over-water path  相似文献   

4.
Novel waveforms are described that have low sidelobes when individual or multiple waveforms are approximately processed. They are related to orthogonal matrices that may be associated with complementary sequences and also with periodic waveforms having autocorrelation functions with constant zero-amplitude sidelobes. Also described are sets of sequences whose cross-correlation functions sum to zero everywhere. A potential application is the elimination of ambiguous range stationary clutter  相似文献   

5.
Ballistic missile track initiation from satellite observations   总被引:3,自引:0,他引:3  
An algorithm is presented to initiate tracks of a ballistic missile in the initial exoatmospheric phase, using line of sight (LOS) measurements from one or more moving platforms (typically satellites). The major feature of this problem is the poor target motion observability which results in a very ill-conditioned estimation problem. The Gauss-Newton iterative least squares minimization algorithm for estimating the state of a nonlinear deterministic system with nonlinear noisy measurements has been previously applied to the problem of angles-only orbit determination using more than three observations. A major shortcoming of this approach is that convergence of the algorithm depends strongly on the initial guess. By using the more sophisticated Levenberg-Marquardt method in place of the simpler Gauss-Newton algorithm and by developing robust new methods for obtaining the initial guess in both single and multiple satellite scenarios, the above mentioned difficulties have been overcome. In addition, an expression for the Cramer-Rao lower bound (CRLB) on the error covariance matrix of the estimate is derived. We also incorporate additional partial information as an extra pseudomeasurement and determine a modified maximum likelihood (ML) estimate of the target state and the associated bound on the covariance matrix. In most practical situations, probabilistic models of the target altitude and/or speed at the initial point constitute the most useful additional information. Monte Carlo simulation studies on some typical scenarios were performed, and the results indicate that the estimation errors are commensurate with the theoretical lower bounds, thus illustrating that the proposed estimators are efficient  相似文献   

6.
The Bayesian solution to the problem of tracking a target with measurement association uncertainty gives rise to mixture distributions, which are composed of an ever increasing number of components. To produce a practical tracking filter, the growth of components must be controlled by approximating the mixture distribution. Two mixture reduction schemes (a joining algorithm and a clustering algorithm) have been derived for this purpose. If significant well spaced mixture components are present, these techniques can provide a useful improvement over the probabilistic data association filter (PDAF) approach, which reduces the mixture to a single Gaussian component at each time step. For the standard problem of tracking a point target in uniform random clutter, a Monte Carlo simulation study has been employed to identify the region of the problem parameter space where significant performance improvement is obtained over the PDAF. In the second part of this paper, the formal Bayesian filter is derived for an extended target consisting of an array of measurement sources with association uncertainty. A practical multiple hypothesis filter is implemented using mixture reduction and simulation results are presented.  相似文献   

7.
A new approach is described for combining range and Doppler data from multiple radar platforms to perform multi-target detection and tracking. In particular, azimuthal measurements are assumed to be either coarse or unavailable, so that multiple sensors are required to triangulate target tracks using range and Doppler measurements only. Increasing the number of sensors can cause data association by conventional means to become impractical due to combinatorial complexity, i.e., an exponential increase in the number of mappings between signatures and target models. When the azimuthal resolution is coarse, this problem will be exacerbated by the resulting overlap between signatures from multiple targets and clutter. In the new approach, the data association is performed probabilistically, using a variation of expectation-maximization (EM). Combinatorial complexity is avoided by performing an efficient optimization in the space of all target tracks and mappings between tracks and data. The full, multi-sensor, version of the algorithm is tested on simulated data. The results demonstrate that accurate tracks can be estimated by exploiting spatial diversity in the sensor locations. Also, as a proof-of-concept, a simplified, single-sensor range-only version of the algorithm is tested on experimental radar data acquired with a stretch radar receiver. These results are promising, and demonstrate robustness in the presence of nonhomogeneous clutter.  相似文献   

8.
 A closed-form approximate maximum likelihood (AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements of a signal received at a number of receivers. The maximum likelihood (ML) technique is a powerful tool to solve this problem. But a direct approach that uses the ML estimator to solve the localization problem is exhaustive search in the solution space, and it is very computationally expensive, and prohibits real-time processing. On the basis of ML function, a closed-form approximate solution to the ML equations can be obtained, which can allow real-time implementation as well as global convergence. Simulation results show that the proposed estimator achieves better performance than the two-step weighted least squares (WLS) approach, which makes it possible to attain the Cram閞-Rao lower bound (CRLB) at a sufficiently high noise level before the threshold effect occurs.  相似文献   

9.
EM-ML algorithm for track initialization using possibly noninformative data   总被引:1,自引:0,他引:1  
Initializing and maintaining a track for a low observable (LO) (low SNR, low target detection probability and high false alarm rate) target can be very challenging because of the low information content of measurements. In addition, in some scenarios, target-originated measurements might not be present in many consecutive scans because of mispointing, target maneuvers, or erroneous preprocessing. That is, one might have a set of noninformative scans that could result in poor track initialization and maintenance. In this paper an algorithm based on the expectation-maximization (EM) algorithm combined with maximum likelihood (ML) estimation is presented for tracking slowly maneuvering targets in heavy clutter and possibly noninformative scans. The adaptive sliding-window EM-ML approach, which operates in batch mode, tries to reject or weight down noninformative scans using the Q-function in the M-step of the EM algorithm. It is shown that target features in the form of, for example, amplitude information (AI), can also be used to improve the estimates. In addition, performance bounds based on the supplemented EM (SEM) technique are also presented. The effectiveness of new algorithm is first demonstrated on a 78-frame long wave infrared (LWIR) data sequence consisting of an Fl Mirage fighter jet in heavy clutter. Previously, this scenario has been used as a benchmark for evaluating the performance of other track initialization algorithms. The new EM-ML estimator confirms the track by frame 20 while the ML-PDA (maximum likelihood estimator combined with probabilistic data association) algorithm, the IMM-MHT (interacting multiple model estimator combined with multiple hypothesis tracking) and the EVIM-PDA estimator previously required 28, 38, and 39 frames, respectively. The benefits of the new algorithm in terms of accuracy, early detection, and computational load are illustrated using simulated scenarios as well.  相似文献   

10.
11.
在遥感图像机场目标分类方面,支持向量机(SVM)有着广泛的应用,但由于样本不平衡问题以及不确定性数据的存在,传统SVM算法的分类精度与效果还无法令人满意。为提高传统SVM分类器的性能,文章将建立在模糊理论基础上的模糊核C-均值聚类算法(KFCM)用于处理遥感数据的不确定性问题,并通过聚类分析后的目标子图,剔除非目标样本的同时保留了目标样本,较好地解决了样本不平衡问题。将基于KFCM的SVM分类算法用于遥感图像机场目标的分类,实验结果和性能分析表明该算法分类性能优于传统SVM算法。  相似文献   

12.
The problem of bearing estimation for active systems is examined from the point of view of the generalized wideband ambiguity function (GAF). The maximum likelihood (ML) estimator is derived and its local and global properties are discussed. A structure is proposed which searches the three-dimensional ambiguity surface in two stages first, in range-Doppler, and then, in bearing with the goal of reducing search complexity when utilizing highly resolvent waveforms. Comparisons are made between the ML estimators and structures utilizing phase information which generate closed form estimators. The beneficial results of full bandwidth utilization are discussed in terms of both local and global properties of the GAF.  相似文献   

13.
针对二进制偏移载波(BOC)调制信号自相关多峰特性引起的信号捕获模糊性问题,提出了一种子相关相乘边峰消除技术(CMSCT)。根据BOC子相关函数的特性,通过将不同子相关函数相乘获得边峰消除能力,并且为了充分利用接收信号,进一步提高捕获性能,提出了相应的优化算法。分析对比了提出算法的实现复杂度和基于恒虚警率准则的峰值发现概率,对Galileo E1C中频采样信号的处理结果表明:提出的边峰消除方法有效解决了捕获模糊性问题。  相似文献   

14.
15.
We present the development of a multisensor fusion algorithm using multidimensional data association for multitarget tracking. The work is motivated by a large scale surveillance problem, where observations from multiple asynchronous sensors with time-varying sampling intervals (electronically scanned array (ESA) radars) are used for centralized fusion. The combination of multisensor fusion with multidimensional assignment is done so as to maximize the “time-depth” in addition to “sensor-width” for the number S of lists handled by the assignment algorithm. The standard procedure, which associates measurements from the most recently arrived S-1 frames to established tracks, can have, in the case of S sensors, a time-depth of zero. A new technique, which guarantees maximum effectiveness for an S-dimensional data association (S⩾3), i.e., maximum time-depth (S-1) for each sensor without sacrificing the fusion across sensors, is presented. Using a sliding window technique (of length S), the estimates are updated after each frame of measurements. The algorithm provides a systematic approach to automatic track formation, maintenance, and termination for multitarget tracking using multisensor fusion with multidimensional assignment for data association. Estimation results are presented for simulated data for a large scale air-to-ground target tracking problem  相似文献   

16.
We present an algorithm for identifying the parameters of a proportional navigation guidance missile (pursuer) pursuing an airborne target (evader) using angle-only measurements from the latter. This is done for the purpose of classifying the missile so that appropriate counter-measures can be taken. Mathematical models are constructed for a pursuer with a changing velocity, i.e., a direction change and a speed change. Assuming the pursuer is launched from the ground with fixed thrust, its motion can be described by a four-dimensional parameter vector consisting of its proportional navigation constant and three parameters related to thrusting. Consequently, the problem can be solved as a parameter estimation problem, rather than state estimation and we provide an estimator based on maximum likelihood (ML) to solve it. The parameter estimates obtained can be mapped into the time-to-go until intercept estimation results are presented for different scenarios together with the Cramer-Rao lower bound (CRLB), which quantifies the best achievable estimation accuracy. The accuracy of the time-to-go estimate is also obtained. Simulation results demonstrate that the proposed estimator is efficient by meeting the CRLB.  相似文献   

17.
18.
This paper studies the dynamic estimation problem for multitarget tracking. A novel gating strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density(PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measurements. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estimation algorithm when sequential Monte Carlo(SMC) implementation of the PHD filter is investigated, where the measurements are used to drive the particle clustering within the space gate.The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.  相似文献   

19.
邢怀玺  张宇晖  陈游  周一鹏  何文波 《航空学报》2021,42(3):324278-324278
针对最大似然估计(ML)方法求解测相位差变化率单站无源定位问题计算量大、定位慢的问题,本文提出一种利用蒙特卡洛重要性抽样技术(MCIS)高精度、低复杂度的估计方法。根据Pincus定理推导出ML问题的近似全局解,利用重要性抽样(IS)技术构建符合高斯分布概率密度(PDF)的重要性函数,作为样本选取的依据,通过逆变换采样获得样本集,统计样本均值直接得到辐射源位置估计结果。MCIS方法简单易实现且运算量低,能够克服传统ML估计多维网格搜索耗时较长的缺陷,而且对目标位置初始估计误差有较低的敏感性。实验结果表明,MCIS算法在相同测量噪声水平下,定位精度优于EKF、NLS算法,有效减小了初始化估计误差对算法定位精度的影响,也进一步讨论分析了算法参数和不同观测条件对定位性能的影响。  相似文献   

20.
Transmit Beamforming for MIMO Radar Systems using Signal Cross-Correlation   总被引:2,自引:0,他引:2  
Proposed next-generation radar systems will have multiple transmit apertures with complete flexibility in the choice of the signals transmitted at each aperture. Here we propose the use of multiple signals with arbitrary cross-correlation matrix R, and show that R can be chosen to achieve or approximate a desired spatial transmit beampattern. Two specific problems are addressed. The first is the constrained optimization problem of finding the value of R which causes the true transmit beampattern to be close in some sense to a desired beampattern. This is approached using convex optimization techniques. The second is the problem of designing multiple constant-modulus waveforms with given cross-correlation R. The use of coded binary phase shift keyed (BPSK) waveforms is considered. A method for finding the code sequences based on random signaling with a structured correlation matrix is proposed. It is also shown that by restricting the class of admissible waveforms one reduces the set of possible signal correlation matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号