共查询到20条相似文献,搜索用时 0 毫秒
1.
Takesi Nagata 《Space Science Reviews》1975,17(2-4):205-220
The morphology of development of auroral flares (magnetospheric substorms) for both electron and proton auroras is summarized, based on ground-based as well as rocket-borne and satellite-borne data with specific reference to the morphology of solar flares.The growth phase of an auroral flare is produced by the inflow of the solar wind energy into the magnetosphere by the reconnection mechanism between the solar wind field and the geomagnetic field, thus the neutral and plasma sheets in the magnetotail attaining their minimum thickness with a great stretch of the geomagnetic fluxes into the tail.The onset of the expansion phase of an auroral flare is represented by the break-up of electron and proton auroras, which is associated with strong auroral electrojets, a sudden increase in CNA, VLF hiss emissions and characteristic ULF emissions. The auroral break-up is triggered by the relaxation of stretched magnetic fluxes caused by cutting off of the tail fluxes at successively formed X-type neutral lines in the magnetotail.The resultant field-aligned currents flowing between the tailward magnetosphere and the polar ionosphere produce the field-aligned anomalous resistivity owing to the electrostatic ion-cyclotron waves; the electrical potential drop thus increased further accelerates precipitating charged particles with a result of the intensification of both the field-aligned currents and the auroral electrojet. It seems that the rapid building-up of this positive feedback system for precipitating charged particles is responsible for the break-up of an auroral flare. 相似文献
2.
P. Démoulin J. C. Hénoux B. Schmieder C. H. Mandrini M. G. Rovira B. Somov 《Space Science Reviews》1994,68(1-4):129-130
We present a detailed analysis of the magnetic topology of flaring active region. TheH
kernels are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibrils or/and transverse magnetic field direction, is taken into account. We show that the kernels are magnetically connected by field lines passing close to the separator. We confirm, for other flares, previous studies which show that photospheric current concentrations are located at the borders of flare ribbons. Moreover we found two photospheric current concentrations of opposite sign, linked in the corona by field lines which follow separatrices. These give evidence that magnetic energy is released by reconnection processes in solar flares. 相似文献
3.
We present preliminary results from high resolution observations obtained with the Michelson Doppler Imager (MDI) instrument
on the SOHO of two large solar flares of 14 July 2000 and 24 November 2000. We show that rapid variations of the line-of-sight
magnetic field occured on a time scale of a few minutes during the flare explosions. The reversibility/irreversibility of
the magnetic field of both active regions is a very good tool for understanding how the magnetic energy is released in these
flares. The observed sharp increase of the magnetic energy density at the time of maximum of the solar flare could involve
an unknown component which deposited supplementary energy into the system.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
4.
Nuclear processes and particle acceleration in solar flares are reviewed. The theory of gamma-ray and neutron production is discussed and results of calculations are compared to gamma-ray, neutron, and charged-particle observations from solar flares. The implications of these comparisons on particle energy spectra, total numbers, anisotropies, electron-to-proton ratios, as well as on acceleration mechanisms and the interaction site, are presented. The information on elemental and isotopic abundances derived from gamma-ray observations is compared to abundances obtained from escaping accelerated particles and other sources.NAS/NRC Resident Research Associate. 相似文献
5.
6.
Murray Dryer 《Space Science Reviews》1974,15(4):403-468
Recent observational and theoretical studies of interplanetary shock waves associated with solar flares are reviewed. An attempt is made to outline the framework for the genesis, life and demise of these shocks. Thus, suggestions are made regarding their birth within the flare generation process, MHD wave propagation through the chromosphere and inner corona, and maturity to fully-developed coronal shock waves. Their subsequent propagation into the ambient interplanetary medium and disturbing effects within the solar wind are discussed within the context of theoretical and phenomenological models. The latter — based essentially on observations — are useful for a limited interpretation of shock geometric and kinematic characteristics. The former — upon which ultimate physical understanding depends — are used for clarification and classification of the shocks and their consequences within the solar wind. Classification of limiting cases of blast-produced shocks (as in an explosion) or longer lasting ejecta (or piston-driven shocks) will hopefully be combined with the study of the flare process itself.The theoretical approach, in spite of its contribution to clarification of various concepts, contains some fundamental limitations and requires further study. Numerical simulations, for example, depend upon a non-unique set of multi-parameter initial conditions at or near the Sun. Additionally, the subtle but important influence of magnetic fields upon energy transport processes within the solar wind has not been considered in the numerical simulation approach. Similarity solutions are limited to geometrical symmetries and have not exploited their potential beyond the special cases of the blast and the constant-velocity, piston-driven shock waves. These continuum fluid studies will probably require augmentation or even replacement by plasma kinetic theory in special situations when observations indicate the presence of anomalous transport processes. Presently, for example, efforts are directed toward identification of detailed shock structures (as in the case of Earth's bow shock) and of the disturbed solar wind (such as the piston).Further progress is expected with extensive in situ and remote monitoring of the solar wind over a wide range of heliographic radii, longitudes and latitudes.This paper is a revised and updated version of an invited review originally presented at the IUGG XV General Assembly, Moscow, U.S.S.R., 2–14 August 1971. 相似文献
7.
8.
9.
K. Ohki 《Space Science Reviews》1989,51(1-2):215-228
Observational features concerning solar energetic particles are compactly reviewed with some emphasis on the spectra and time histories. Velocity dependent characteristics in the energy spectra are pointed out, and compared to the results of the interplanetary shocks. A shock drift acceleration is introduced in order to interpret the observational features, especially a very fast acceleration to MeV energies within an order of second. There is a strong evidence of the shock drift acceleration in the interplanetary shocks. When some conditions are satisfied in the corona, only one or several encounters of particles with a near perpendicular shock accelerates protons to gamma-ray emitting energies (> 10 MeV). Pre-acceleration is inevitable for any kind of acceleration mechanisms in solar flares. To fulfill the requirements from the abundance ratios between various species of accelerated ions, pre-acceleration to the same velocities before the injection into a main acceleration process turns out to be absolutely necessary. 相似文献
10.
M. Yoshimori 《Space Science Reviews》1989,51(1-2):85-115
Gamma-ray observations from HINOTORI satellite and possible neutron observations from the Tokyo neutron monitor are reviewed. Time histories of gamma-ray and X-ray emissions for both typical impulsive and gradual flares are discussed in connection with the particle acceleration time. The gamma-ray spectral hardening observed around 400 keV is explained from superimposition of two different electron bremsstrahlung spectra. Proton-energy spectra derived from the gamma-ray observations are compared with the solar energetic particle spectra in interplanetary space. The weak correlation between the gamma-ray fluence and the proton flux is discussed in connection with the particle trapping and escaping in the flare region. The limb darkening of the 2.22 MeV line resulting from neutron-proton capture is interpreted in terms of the attenuation by the Compton scattering in the photosphere. Possible solar neutron events recorded by the Tokyo neutron monitor are presented and the correlation between the gamma-ray fluence and the neutron fluence are described. 相似文献
11.
Tatsuzo Obayashi 《Space Science Reviews》1975,17(2-4):195-203
Flare phenomena in the solar atmosphere and in the terrestrial magnetosphere exhibit many similarities. The mechanical energy of enhanced photospheric motion is converted and stored in the form of magnetic potential energy in sunspot fields, which is analogous to the case of the growth phase of magnetospheric substorms. The energy release during the explosive phase is initiated by a sudden collapse in the magnetic field topology and the X-type magnetic neutral point is created in the corona. Subsequent electrical discharge takes place in the form of an intense electrojet current flowing in the base of the chromosphere at the altitude where the Cowling conductivity is a maximum. It is suggested that the acceleration of particles by field-aligned electric fields and the Ohmic heating in the chromosphere result in major features of solar flares.This article also appears inSolar Physics
40 (1975) 217–226. By way of exception this paper is reproduced here for the sake of completeness. 相似文献
12.
13.
Barbara Sylwester 《Space Science Reviews》1996,76(3-4):319-337
Extended review of selected papers which deal with the problem of flare heating in solar coronal loops is presented. Discussed methods of the analysis of flare heating based on the X-ray observations have been worked out using the Palermo-Harvard hydrodynamic code. The case is presented when the assumption of the uniform heating across the loop is made. The existence of multiple elementary heating episodes is postulated as well. Next the possibility of the non-uniform heating across the loop is assumed and its manifestation in the X-ray observations is investigated. The application of proposed methods of the analysis to the observations of solar flares in X-rays is presented. 相似文献
14.
G. M. Simnett 《Space Science Reviews》1995,73(3-4):387-432
This work addresses the role of non-thermal protons as a means of transporting energy in stellar atmospheres. The most dramatic transient visible phenomena are flares, the best studied of which are from the Sun. It is believed that energetic particles take a fundamental part in flare development, but it is controversial as to whether protons or electrons play the dominant role. This review is aimed at helping resolve the controversy. We start by outlining acceleration mechanisms for energetic particles, on the premise that the acceleration site is in the corona. The propagation of a proton beam through the atmosphere is discussed, together with the radiation signatures it would produce. Chromospheric evaporation is expected as the beam reaches the dense part of the atmosphere. Direct observational evidence for energetic protons is reviewed, from gamma-ray production involving energies >30 MeV to H polarization, which is significant at energies 100 keV. Proton beams can be detected in the corona via slowly-drifting type III bursts, while they can be directly sampled by spacecraft and, at energies >1 GeV, by detectors on the Earth. A number of key flare observations and energy arguments are debated from the viewpoint of protons versus electrons. The conclusion is that primary non-thermal protons are much more important, in terms of total energy, than non-thermal electrons in flares, and that the bulk of the energetic electrons are secondary. 相似文献
15.
We review the physical processes of particle acceleration, injection, propagation, trapping, and energy loss in solar flare
conditions. An understanding of these basic physical processes is inexorable to interpret the detailed timing and spectral
evolution of the radiative signatures caused by nonthermal particles in hard X-rays, gamma-rays, and radio wavelengths. In
contrast to other more theoretically oriented reviews on particle acceleration processes, we aim here to capitalize on the
numerous observations from recent spacecraft missions, such as from the Compton Gamma Ray Observatory (CGRO), the Yohkoh Hard X-Ray Telescope (HXT) and Soft X-Ray Telescope (SXT), and the Transition Region and Coronal Explorer (TRACE). High-precision energy-dependent time delay measurements from CGRO and spatial imaging with Yohkoh and TRACE provide invaluable observational constraints on the topology of the acceleration region, the reconstruction of magnetic reconnection
processes, the resulting electromagnetic fields, and the kinematics of energized (nonthermal) particles.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
16.
Michael D. Montgomery 《Space Science Reviews》1973,14(3-4):559-575
The properties of the solar wind including magnetic fields, plasma, and plasma waves are briefly reviewed with emphasis on conditions near and beyond the orbit of Jupiter. An extrapolation of the steady-state wind to large distances, evolution of disturbances and structure, modulation of cosmic rays, interactions with planetary bodies (bow shocks and magnetosheaths), and interactions with interstellar neutral helium and hydrogen are briefly discussed. Some comments on instrumentation requirements to observationally define the above phenomena are also included.This is one of the publications by the Science Advisory Group. 相似文献
17.
L. D. De Feiter 《Space Science Reviews》1974,16(1-2):3-43
In this paper a review is presented of the present status of our knowledge of solar flare phenomena with special emphasis on the production of suprathermal particles and their solar effects. Of these energetic particles electrons play an important role since they produce the X-ray and radiobursts observed during many flares. Also, during their slowing down to thermal energies they contribute to the heating of localized regions in the solar atmosphere, through energy exchange with the ambient electrons. Observable radiations of energetic protons, and other nuclei, are produced through nuclear interactions leading to the emissions of gamma-ray lines. Detectable fluxes of these gamma-ray lines are produced only in the most powerful flares. Also the nuclei that enter into deeper layers of the solar atmosphere transfer most of their kinetic energy to the ambient plasma. 相似文献
18.
Maps of the corona, obtained at meter wavelengths with the Nançay Radioheliograph (France), are used to study, on the disk, the radio counterpart of the coronal plasma sheet observed in K-corona on the limb. We study here the evolution of the coronal plasma sheet from the maximum of the activity cycle in 1980 to the minimum in 1986 and identify some of its large scale structures. 相似文献
19.
20.
A. G. W. Cameron 《Space Science Reviews》1973,15(1):121-146
The present status of abundance information for elements in meteorites and in the Sun is reviewed, and a new table of abundances of the elements, which should be characteristic of the primitive solar nebula, is compiled and presented. Special attention is called to the elemental abundances in the silicon-to-calcium region, where many of the abundances are rather poorly determined, and where these abundances have an impact on theories of nucleosynthesis of the elements. To each elemental isotope is assigned a mechanism of nucleosynthesis which may have been responsible for production of most of that isotope, and brief comments are made concerning the present status of understanding of the different mechanisms of nucleosynthesis.This paper not presented at the Symposium on Cosmochemistry. 相似文献