首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用自制2,2′-(1,3-苯)双(4,5-二氢)噁唑分别与热塑性酚醛树脂或二氨基二苯甲烷(DADPM)进行聚合反应制得了聚醚酰胺树脂(PEAR)和聚氨基酰胺树脂(PAAR)。实验表明:PEAR的冲击强度达到6kJ/m^2以上,弯曲强度达到100MPa以上,且电绝缘性能优良,可作为H级绝缘材料使用;PAAR的冲击强度最高达到22kJ/m^2,弯曲强度达到202.MPa,电绝缘性能较PEAR稍差,但仍然可作为H级绝缘材料使用,另外还可望作为无卤阻燃材料使用。以这两种高性能热固性树脂为基体可制备出性能优良的玻璃布复合材料。  相似文献   

2.
以1,4-二(4’-乙炔苯氧基)苯与甲基苯基二氯硅烷为原料,通过格氏反应合成具有二苯醚结构的含甲基苯基硅芳醚芳炔(PSEA-P2)树脂,进而制备其碳纤维增强复合材料。通过核磁共振(1H-NMR)、红外光谱(FT-IR)、差热分析(DSC)、热重分析(TGA)、动态热机械分析(DMA)等分析手段对树脂及其复合材料的结构与性能进行表征。结果表明:PSEA-P2树脂加工窗口为110~175℃,适合复合材料模压成型;树脂浇铸体具有优良的力学强度和耐热性能,在室温~450℃未出现玻璃化转变,弯曲强度可达54.3MPa,氮气下热分解温度Td5达到531℃;T300碳纤维增强复合材料室温下弯曲强度可达518.0MPa,400℃下弯曲强度保留率为53%。  相似文献   

3.
有机锡化合物催化氰酸树脂的性能   总被引:1,自引:0,他引:1  
采用有机锡化合物作为氰酸酯树脂的固化反应催化剂,评价了催化剂对固化树脂的力学性能、耐热性、吸水率以及对复合材料力学性能的影响。结果表明加入有机锡催化剂后,氰酸酯固化树脂和复合材料具有优良的性能,其中固化树脂的弯曲强度为124MPa,冲击强度为12 6kJ/m2,玻璃化转变温度为258℃,复合材料的弯曲强度为742 6MPa,层间剪切强度为72 3MPa。这表明在有机锡化合物的催化作用下,氰酸酯充分表现出了高性能树脂基体的特性,同时也说明有机锡是氰酸酯固化反应的有效催化剂。  相似文献   

4.
以N,N,N’,N’-四缩水甘油基-1,3-间苯二甲胺(TGMXDA)和双酚F环氧(DGEBF)作为基体,以4,4'-双[(4-氨基-2-三氟甲基)苯氧基]联苯(6FBAB)和3,3’-二氨基二苯砜(3,3’-DDS)作为固化剂制备了新型环氧基体树脂.研究了环氧基体与固化剂的结构和配比对环氧固化物耐热与力学性能的影响规律.结果表明,TGMXDA- DGEBF/6FBAB-DDS树脂体系固化物具有良好的力学性能,拉伸强度达到101 MPa,冲击强度>20 kJ/m2,断裂伸长率>6%.同时,该树脂体系还具有良好的耐热稳定性,氮气中的5%失重温度>330℃.  相似文献   

5.
为提高双马来酰亚胺树脂的韧性、降低其固化温度,在树脂中引入二元胺,2,2’-(1,3-苯)双(4,5-二氢)噁唑啉(1,3-BOX)和改性剂苯胺型乙烯基苄基化合物(N-DVBA)。通过DSC、DMTA、SEM等分析手段对基体树脂的结构和性能进行了研究。结果表明:改性剂N-DVBA降低了反应体系的固化温度,二元胺和1,3-BOX提高了体系的韧性。改性后双马树脂Tg达279.1℃,弯曲强度和拉伸强度分别为133.80和88.50 MPa,断裂伸长率为3%,介电常数为3.79,介电损耗(1 MHz)为0.010。  相似文献   

6.
选用双氰胺和UR500为固化体系,自制阻燃剂M,制备一种预浸料用潜伏性无卤阻燃中温固化环氧树脂体系。结果表明,该树脂体系室温下储存期超过30 d,固化后力学性能优良,拉伸性能可达66. 5MPa,弯曲强度可达133 MPa,冲击强度可达10. 7 kJ/m2,阻燃防火性能优异,氧指数高达33. 1%,垂直燃烧满足UL-V0级,且可离火自熄。扫描电镜和热分析的结果表明,该体系优异的阻燃性能主要源于其燃烧后所成碳层的隔热隔氧作用。  相似文献   

7.
探索研究了F-8H3/602芳纶织物增强树脂基复合材料层合板不同树脂含量对其冲击韧性、层间剪切强度及弯曲性能的影响,并采用显微镜及扫描电镜对破坏试样形貌进行观察。结果表明芳纶复合材料的树脂含量对其冲击韧性、层间剪切强度及弯曲性能影响较为明显,树脂含量为46.02wt%的芳纶复合材料层合板的0°冲击韧性为22 J/cm2、0°层间剪切强度为49.1 MPa、0°弯曲强度为506 MPa;在一定的树脂含量下,芳纶复合材料的0°冲击韧性、层间剪切强度及弯曲性能较90°的性能更优异;破坏试样的形貌表明纤维与树脂界面结合较为薄弱。  相似文献   

8.
在双马来酰亚胺/二元胺/改性剂A预聚体系中加入环氧丙烯酸树脂,制备了一种可用作耐热复合材料基体的改性双马来酰亚胺树脂。用DSC研究了该树脂基体的反应特性,并制定出了合适的固化工艺参数:改性树脂基体经140℃/1 h 160℃/1 h 180℃/2 h初固化,于220℃/8 h后固化处理,其热变形温度(HDT)为245℃;该树脂与玻璃纤维制备的单向复合材料层压板的室温拉伸强度、弯曲强度和层间剪切强度分别为1 030 MPa、1 600 MPa和92.1 MPa;180℃下测得弯曲强度保持率为67.8%,层间剪切强度保持率为63.2%,用DMA法测得T_g为273℃。  相似文献   

9.
以4-苯乙炔基苯偶酰(PEBZ)作为封端剂,以芳香族四酮,9,9-双(4-苯偶酰氧基苯基)芴和芳香族四胺,3,3’,4,4 '-四氨基联苯(BPTA)作为单体,设计并合成了一系列苯乙炔基封端聚苯基喹恶啉(PEPPQ)树脂(PPQ-1~PPQ-4).设计分子量分别为2 500( PPQ-1)、5 000(PPQ-2)、10 000(PPQ -3)以及20 000(PPQ-4).流变分析表明,PPQ-1与PPQ -2具有良好的加工性能,350℃左右的最低黏度分别为21和568 Pa·s.通过热模压工艺制备了PPQ-1和PPQ -2固化样件,Tg分别为338和325℃.固化物具有优良的耐热稳定性,氮气中以10℃/min升温,5%失重温度均在550℃以上,750℃时的残重在60%以上.PPQ -2固化物表现出了良好的力学性能,拉伸与弯曲强度分别为88和155 MPa,断裂伸长率达到7.6%.  相似文献   

10.
PMR型增韧聚酰亚胺的制备与性能研究   总被引:2,自引:0,他引:2  
制备了系列PMR型聚酰亚胺基体树脂以及碳纤维增强复合材料(HFPI),系统研究了PMR型聚酰亚胺HFPI基体树脂及复合材料性能.制备的PMR型聚酰亚胺HFPI基体树脂溶液具有良好的储存稳定性,室温下可以存放4个月,不产生沉淀;PMR型聚酰亚胺HFPI基体树脂具有良好的成型性以及优异的热稳定性,热分解温度高达540℃、玻璃化转变温度达到290℃(DMA)、热膨胀系数在40~50ppm/℃之间、较低吸水率(1.0%~1.7%)、优异力学性能;用短切碳纤维增强HFPI,基体树脂与碳纤维具有良好黏附性,制备的复合材料除了具有良好加工成型性能外,更具有优异力学性能,拉伸强度高达107.3MPa,断裂伸长率为5.73%,弯曲强度和弯曲模量分别高达159.8MPa,6.11GPa.  相似文献   

11.
对E51环氧树脂改性双酚A型氰酸酯(BADCy)体系的力学性能及热性能进行了研究,发现当E51环氧树脂的质量含量为5%时,改性体系的弯曲强度和冲击强度分别由原来的95.6MPa和9.24kJ/m2提高到了117.8MPa和12.6kJ/m2,而热变形温度仅下降8℃。以该改性体系为基体制作的M40J复合材料,其弯曲强度、模量和剪切强度分别高达:1270MPa,172GPa,68 9MPa。消泡剂BYK141能提高M40J/BADCy复合材料的力学性能,层间剪切强度可提高到77.1MPa。M40J/BADCy复合材料还具有良好的耐环境能力,是一种理想的航空航天结构材料。  相似文献   

12.
新型含硅芳炔树脂复合材料制备工艺   总被引:1,自引:0,他引:1       下载免费PDF全文
以含硅芳炔树脂为基体、高强玻璃布为增强材料制备了新型含硅芳炔树脂复合材料,探讨了树脂的固化工艺,研究了树脂含量、成型温度和成型压力对复合材料性能的影响,确定了含硅芳炔树脂复合材料成型的工艺参数:树脂质量分数31%、升温程序170℃/2h+210℃/2h+250℃/4h、成型压力1.0MPa。优化工艺条件下制备的复合材料弯曲强度达278MPa。  相似文献   

13.
采用表面预涂环氧E51树脂的方法制备了具有层间柔性缓冲层的M40增强双酚A型二氰酸酯(BADCy)复合材料单向板。FT-IR、SEM及力学性能分析表明,高温下(180℃)环氧E51与BADCy反应形成柔性好且线胀系数(CTE)较低的五元噁唑烷酮环能有效地松弛复合材料界面间的层间应力。当E51处理液的浓度为10%时,M40/BADCy复合材料的层间剪切和弯曲强度分别由原来的69.8和1 080 MPa增加到78.1和1 110 MPa,提高了约12%和3%。  相似文献   

14.
在满足繁忙机场不停航施工要求下,制备出道面浅层高早强快速修补砂浆对保障飞机准点运行及安全起降具有重要意义。采用自制的特种胶凝材料,通过优选砂胶比、水胶比及外加剂复配等技术制备出高早强快速修补砂浆,研究该修补砂浆的力学性能、黏结性能与耐久性能。结果表明:高早强快速修补砂浆2h抗压、抗折强度分别为32.5MPa和4.8MPa,且2h和28d黏结强度可分别达到其抗折强度的75%和84%;与C40混凝土相比,该修补砂浆早期具有微膨胀性,可补偿收缩,减小与旧混凝土间变形差异,120d收缩率降低了60.5%,3d耐磨性可达到C40混凝土28d的耐磨性,且具有优良的抗渗性与抗冲击性。  相似文献   

15.
纳米CaCO3/PPS复合材料微观结构及性能研究   总被引:4,自引:0,他引:4  
纳米碳酸钙(CaCO3)与聚苯硫醚(PPS)通过熔融共混挤出制得复合材料,通过透射电镜对纳米碳酸钙的形态及粒径分布进行观察,并用原子力显微镜、力学测试等方法对复合材料微观结构和力学性能进行表征.结果表明,纳米碳酸钙的平均粒径约56nm,从复合材料表面形貌可见纳米碳酸钙分散在树脂基体里,少量粒子变形;复合材料的韧性得到明显提高,在添加量为5wt%时,冲击强度达到74.13kJ/m2,抗拉强度则在10wt%时达到最大,83.73MPa.  相似文献   

16.
热压烧结法制备Cf/SiC陶瓷基复合材料研究   总被引:2,自引:1,他引:2  
以有机硅先驱体聚碳硅烷为粘结剂,采用热压烧结工艺,制得了Cf/SiC陶瓷基复合材料,并对其三点弯曲强度进行了测试和分析,结果表明:该工艺方法可方便的制得强度较高的陶瓷基复合材料单向板;其三点弯曲强度与试样的高跨比有很大关系,高跨比越大,弯曲强度越小;当高跨比为0.073时,材料弯曲强度为475.1MPa,断裂功为4.47kJ/m^2;材料的应力-应变曲线与普通陶瓷不同,表现塑性变形的非线性弹性特征  相似文献   

17.
为了满足双马来酰亚胺树脂(BMI)应用于Z-pin高效拉挤的需求,要求其具有低黏度(500 mPa?s)、耐热(玻璃化转变温度大于200 ℃)、固化快以及韧性好等性能。使用TDE-85环氧树脂(EP)降低BMI黏度,并进一步加入改性剂提高树脂的耐热性和力学性能。分别采用黏度测试、差示扫描量热分析、热重分析、力学性能测试等方法研究树脂固化工艺、固化反应动力学、耐热性以及基本力学性能,筛选最佳树脂体系制备Z-pin并进行性能测试与分析。研究结果表明:TDE-85环氧树脂的加入可以有效降低树脂体系的黏度,满足高效拉挤工艺性需求。加入改性剂二苯甲烷二异氰酸酯(MDI)提高了EP-BMI体系的韧性和耐热性,玻璃化转变温度为251 ℃,综合性能达到最优。浇铸体拉伸强度、冲击强度分别为66 MPa、21 kJ/m2,分别提高了38%、53%。Z-pin短梁剪强度为67 MPa,与基体结合强度为31.2 MPa。改性树脂体系充分满足Z-pin高效拉挤的工艺需求和性能要求,具有良好的工程应用价值。   相似文献   

18.
针对国内外高温励磁绕组存在的缺陷与不足,提出了一种新型的迷宫形励磁绕组结构,首先通过电火花线切割制造出单层迷宫形线圈,并在线圈匝间和层间充分均匀地填充耐高温绝缘材料;然后通过真空钎焊工艺实现多层迷宫形线圈的牢固焊接,最后将焊接成型的多层线圈封装成迷宫形绕组,并应用于单自由度高温磁悬浮轴承试验台中,实现了550℃被悬浮物体近20h的稳定悬浮.研究结果表明:线圈焊缝的高温电阻值小,抗剪切强度满足要求,焊缝的金相组织致密均匀;绕组匝间和层间绝缘性能良好;迷宫形励磁绕组在原理和工艺上是可行的.对高温悬浮试验后的迷宫形绕组内部形貌进行观察后发现封装线圈的高温绝缘材料存在一定的缺陷,有待进一步研究.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号