首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
正欧洲南方天文台是欧洲多国的天文学家合作创建的国际性机构,建成于20世纪60年代末,总部位于德国慕尼黑北部的加兴,主要观测设施建在智利圣地亚哥以北600千米处的拉西拉山上。作为天文领域的领导者,欧洲南方天文台的研究领域有恒星、星系、星际物质、星系团、类星体、X射线天文学、伽马射线天文学、射电天文学和天文仪器与技术方法等。对现代天文学来说,天文  相似文献   

2.
美空军的空间试验计划(STP)随美国军事空间活动的增加而扩大。目前美空军正准备进行更加广泛的科学和技术实验,从金爪激光定位技术试验到航天飞机目标测量计划,涉及许多学科,如空间等离子体物理学、无线电技术、红外、紫外及X射线天文学,还有空间电子设备技术等。 STP原则上是发射国防部的有效载荷,但也包括航宇局和其他部门的以及联合实验项目。STP的空间实验方式有如下几种: 1.在“专门”的STP卫星上进行,如  相似文献   

3.
<正>印度计划于2015年9月27日在印度萨迪什·达万航天中心(Satish Dhawan Space Center)用印度"极轨卫星运载火箭"(PSLV)发射本国的首颗天文卫星—"天文学卫星"(Astro Sat)。该卫星将飞行在近赤道轨道上,轨道高度650km,倾角8°,轨道周期97min,选择这样一条轨道的主要目的是回避南大西洋辐射异常区。该卫星的观测谱段在X射线和紫外线谱段,这将为解决一些现代天文学的重大难题提供机会。  相似文献   

4.
正进人2018年以来,空间科学先导专项Ⅰ期发射的悟空号暗物质探测卫星,墨子号量子科学实验卫星,慧眼号硬X射线望远镜在轨运行良好,继续产出高水平的科学数据和研究成果。5月31日,中国科学院正式批准了空间科学先导专项Ⅱ期的实施方案,爱因斯坦探针(EP)时域天文学X射线天文台,ASO-S先进空间太阳观测台,太阳风与电离层磁层耦合计划  相似文献   

5.
<正>由于天体发射出的X射线在穿过大气层时大部分会被吸收,因此使用空间望远镜,在大气层以外对天体辐射的X射线进行观测,是X射线天文学的主要观测方式。从20世纪70年代至今,不少X射线空间望远镜被发射升空,为我们揭示了肉眼看不到的宇宙秘密。  相似文献   

6.
中国空间天文40周年   总被引:1,自引:1,他引:0       下载免费PDF全文
过去40年中国空间天文学研究取得了巨大的发展.尤其是近10年内发射了数颗天文卫星,未来几年还将有一些天文卫星计划发射.本文简要回顾了国际空间天文学的发展历程.对中国空间天文学过去40年的发展进行了回顾和总结,包括1970年代第一颗天文卫星计划、气球空间天文探测、基于载人航天工程的空间天文实验以及天文卫星等.此外,介绍了...  相似文献   

7.
正日本宇宙探索局历尽千辛,研制了一台X射线空间望远镜——ASTRO-H,卖萌的日本人给它取了个名字,叫"瞳"(ひとみ)。这台先进的旗舰级X射线望远镜,被视为×射线天文学的未来,肩负着人类探索黑洞等宇宙之谜的重任,造价超过310亿日元(约19亿人民币)。"瞳"在2月17号顺利发射升空。3月26日晚上,"瞳"突然失联。3月28日,业余天文学家Palu Maley捕捉  相似文献   

8.
正天文学是一门观测驱动的科学,天文学的重大进展往往源自于新的观测发现。2015年9月14日,美国激光干涉引力波天文台(LIGO)首次直接探测到来自双黑洞并合的引力波信号,开辟了人类探索宇宙奥秘的新窗口,该发现完成了爱因斯坦广义相对论的最后一块拼图,揭开了引力波天文学时代的序幕。引力波发现之后,伴随引力波产生的电磁辐射(即引力波电磁对应体)的探测研究变得更加重要和紧迫。鉴  相似文献   

9.
在观天巨眼系列前十三篇中,我们介绍了光学望远镜,它们只能用来观测天体发出的可见光。其实,天体还发出许多种我们人类的眼睛看不见的光线。如射电波(实际上就是无线电波,天文学上将其称作射电波)、红外线、紫外线、X射线、γ射线等。古代和近代的天文学家不知道这些不可见光线的存在,他们只能在可见光范围内观测宇宙、研究天体。近一二百年来,人们才陆陆续续发现这些看不见的光线,并且陆陆续续研制出许多观测这些天体辐射的特殊的望远镜,使人类对宇宙的认识越来越全面,越来越深入。  相似文献   

10.
在观天巨眼系列前十三篇中,我们介绍了光学望远镜,它们只能用来观测天体发出的可见光.其实,天体还发出许多种我们人类的眼睛看不见的光线.如射电波(实际上就是无线电波,天文学上将其称作射电波)、红外线、紫外线、X射线、γ射线等.古代和近代的天文学家不知道这些不可见光线的存在,他们只能在可见光范围内观测宇宙、研究天体.近一二百年来,人们才陆陆续续发现这些看不见的光线,并且陆陆续续研制出许多观测这些天体辐射的特殊的望远镜,使人类对宇宙的认识越来越全面,越来越深入.  相似文献   

11.
瑞典皇家科学院决定将2002年诺贝尔物理学奖授给美国科学家雷蒙德·戴维斯、日本科学家小柴昌俊和意大利出生的美国科学家里卡多·贾科尼,以表彰他们在天体物理学领域做出的先驱性贡献,打开了人类观测宇宙的两个新窗口。这两项成果中的一项是戴维斯和小柴昌俊在“探测中微子”方面取得的成就,这一成就迎来了中微子天文学的诞生;另一项是贾科尼在“发现宇宙X射线源”方面取得的成就,这一成就为X射线天文学的诞生奠定了基础。捕捉来自宇宙的中微子著名美籍华裔物理学家吴健雄教授曾经说过:“在世的人们即已看到中微子假说的胜利,也许永远不能…  相似文献   

12.
空蜂式火箭为空间载人飞行和深空探测辅平了道路,它在今年元月七日完成第1037次发射任务后宣告退役。这次飞行是从墨西哥州的白沙导弹发射场发射的。空蜂式火箭为研究云模型和其它的气象征兆开辟了高空摄影史,也为气象卫星的发展起了积极的促进作用。第一颗 X-射线星就是空蜂式火箭发现的。后来发射的空蜂式火箭又发现了十二颗这种星并且形成了一个全新的领域:X-射线天文学。第一张星际广角  相似文献   

13.
威廉·赫歇尔(1738~1822)英国天文学家,恒星天文学的创始人。生于德国汉诺威。1757年迁居英国。1757年以后开始专心研究数学和天文学。1782年被任命为英王宫廷天文学顾问。1821年成为英国皇家天文学会第一任会长,并当选为皇家学会会员。他用自己设计制造的大型反射望远镜观测天象,发现天王星及其两颗卫星、土星的两颗卫星、太阳的空间运动。他发现太阳光中的红外辐射,编制成第一个双星和聚星表,出版星团和星云表,研究银河系结构。800年为了研制太阳观测用的单色滤光片,赫歇尔较光谱中各个色带的热作用,从而发现了红外线设备太阳光经过一个…  相似文献   

14.
紫外线是一种比可见光波长更短的电磁波。其波长介于可见了光与X射线之间。人类发现天体存在着紫外线辐射已有2003年的历史。但是由于地球大气对紫外线的吸收特别严重,因而紫外线天文学迟迟得不到发展。  相似文献   

15.
1 理想的太空观测站□□据新华社 2 0 0 1年 4月 2 6日电 ,中国争取在 2 0 0 5年左右 ,把自己研制的第 1台“空间太阳望远镜”送上太空 ,从而使中国的空间太阳研究进入国际领先行列。此举对促进中国天文学的发展具有重要的推动作用。因为理论和实践都表明 ,在太空进行天文观测 ,由于没有大气层的遮挡和地球引力等因素的影响 ,可以全波段、全天候、全天时、全方位、高灵敏度、高分辨率、无大气抖动、无散射光及超长干涉基线地认识地外精彩世界。天文卫星的问世 ,开创了空间天文学的新时代 ,使天文学产生了第 3次飞跃。所以 ,美国、欧洲空间…  相似文献   

16.
齐明 《飞碟探索》2008,(7):39-39
不知道从什么时开始,国内也流行起用西洋星座来谈命相,也有不少人认为天文学是星相学的一小部分。其实天文学是自然科学的一支,事事都要有实验或观测的证据,而星相学是门玄学,属于信不信由你的范围;两者之间不见得有多少关联。  相似文献   

17.
世界第一位女天文学家(1847) 玛丽亚·米切尔是美国瓦萨学院第一位女天文学教授,利用业余时间研究天文学,1847年发现一颗新彗星,成为世界第一位发现新彗星的女科学家,受到美国人民的爱戴.丹麦国王曾授予她金质奖章.在她去世后,人们为了怀念她,将其塑像陈列在美国名人纪念馆.  相似文献   

18.
20世纪30年代,一位无线电工程师无意当中发现了来自宇宙的无线电渡(天文学家称之为射电波),几年以后,另一位无线电工程师发明了专门用于接收和研究天体射电波的射电望远镜,从而揭开了天文学一个重要分支——射电天文学的序幕。虽然射电天文学诞生至今仅仅不足80年的历史,但是却得到了异常迅猛的发展.  相似文献   

19.
令中国人骄傲的是,中国有5名古代科学家的名字上了月球,他们是石申、张衡、祖冲之、郭守敬、万户。 石申 石申是中国战国时期的魏国人,他和楚人甘德,各自写了一部天文学著作,后人把这两部著作合起来,称为《甘石星经》。《甘石星经》是世界上最早的天文学著作。《甘石星  相似文献   

20.
<正>空间天文学的诞生由于地面天文观测要受到地球大气的各种效应和复杂的地球运动等因素的严重影响,因此,天文观测精度和观测对象受到了许多限制,远远不能满足现代天文研究的需要。为了从根本上克服上述不利因素的影响,天文学的一门新的分支学科——"空间天文学",伴随着航天技术的发展而迅速发展起来。1949年,美国天文学家用缴获的德国V-2导弹搭载一种空间探测器飞出地球大气层外,做了一次短暂的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号