首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waltham D 《Astrobiology》2011,11(2):105-114
Planetary anthropic selection, the idea that Earth has unusual properties since, otherwise, we would not be here to observe it, is a controversial idea. This paper proposes a methodology by which to test anthropic proposals by comparison of Earth to synthetic populations of Earth-like planets. The paper illustrates this approach by investigating possible anthropic selection for high (or low) rates of Milankovitch-driven climate change. Three separate tests are investigated: (1) Earth-Moon properties and their effect on obliquity; (2) Individual planet locations and their effect on eccentricity variation; (3) The overall structure of the Solar System and its effect on eccentricity variation. In all three cases, the actual Earth/Solar System has unusually low Milankovitch frequencies compared to similar alternative systems. All three results are statistically significant at the 5% or better level, and the probability of all three occurring by chance is less than 10(-5). It therefore appears that there has been anthropic selection for slow Milankovitch cycles. This implies possible selection for a stable climate, which, if true, undermines the Gaia hypothesis and also suggests that planets with Earth-like levels of biodiversity are likely to be very rare.  相似文献   

2.
Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.  相似文献   

3.
In recent years, Bacteria and Archaea have been discovered living in practically every conceivable terrestrial environment, including some previously thought to be too extreme for survival. Exploration of our solar system has revealed a number of extraterrestrial bodies that harbor environments analogous to many of the terrestrial environments in which extremophiles flourish. The recent discovery of more than 105 extrasolar planets suggests that planetary systems are quite common. These three findings have led some to speculate that life is therefore common in the universe, as life as we know it can seemingly survive almost anywhere there is liquid water. It is suggested here that while environments capable of supporting life may be common, this does not in itself support the notion that life is common in the universe. Given that interplanetary transfer of life may be unlikely, the actual origin of life may require specific environmental and geological conditions that may be much less common than the mere existence of liquid water.  相似文献   

4.
Plávalová E 《Astrobiology》2012,12(4):361-369
When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.  相似文献   

5.
The lunar orbit is presently expanding due, we believe, to tidal friction, i.e. the attraction of the moon for the tides it raises on the rotating Earth. The Moon may therefore have been significantly closer to the Earth in the distant past, a point of great interest to those studying the lunar origin. This work presents the results of the integration of the equations which govern the rates of change of the lunar orbit elements and the angular momentum of the Earth. Results are presented for both the past and future of the Earth-Moon system.  相似文献   

6.
Knacke RF 《Astrobiology》2003,3(3):531-541
We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.  相似文献   

7.
A long-term goal of space exploration is the development of a lunar settlement that will not only be largely self-sufficient but also contribute to the economy of the Earth-Moon system. Proposals for lunar mining and materials processing developments, as well as tourism-based applications, have appeared in the literature for many years. However, so great are the technical and financial difficulties associated with sustained lunar development that, more than 30 years after the end of the Apollo programme, there have been no practical advances towards this goal. While this may soon be remedied by a series of proposed unmanned orbiters, landers and rovers, the philosophy of lunar exploration and development remains the same as it has for decades: conquer, exploit, and ignore the consequences. By contrasting the well-recognised problems of Earth orbital debris and the barely recognised issue of intentional spacecraft impacts on the lunar surface, this paper illustrates the need for a new model for lunar exploration and development. This new paradigm would assign a value to the lunar environment and provide a balance between protection and exploitation, creating, in effect, a philosophy of sustainable development for the Moon. It is suggested that this new philosophy should be an integral part of any future strategy for lunar colonisation.  相似文献   

8.
地-月系平动点及Halo轨道的应用研究   总被引:10,自引:5,他引:10  
徐明  徐世杰 《宇航学报》2006,27(4):695-699
地-月系统的平动点L1点及L2点的Halo轨道在探月工程中有重要的应用价值,可分别用于地月连续通信覆盖和月球背面的探测。由于在地-月系统中太阳的引力不可忽略,特别是在长时间作用以后,其动力学行为与摄动力较小的日-地系统有明显的不同。本文分析了如何利用太阳引力进入地-月系统的L1点及L2点的Halo轨道、以及由Halo轨道进入近月轨道的问题,两者综合起来构成了一条完整的地月低能转移轨道。研究结果对探月轨道设计有一定的参考价值。  相似文献   

9.
The transfer from the equilateral Lagrangian points of the Earth-Moon system is analysed. The final states of the velocity of the space vehicles and of the rotation velocity of the propulsion vector are assumed given. The trajectory which ensures the transfer in optimal time consists of three arcs. On this trajectory the rotation velocity of the direction of the propulsion has the extremal value or corresponds to the Lawden's tangent law. The use of the matching of the arcs together with transversality conditions and final conditions determines the constants of integration and the evolution time. The resulting parametric equations of the optimal trajectory are of integral form.  相似文献   

10.
不同月球借力约束下的地月Halo轨道转移轨道设计   总被引:1,自引:0,他引:1  
张景瑞  曾豪  李明涛 《宇航学报》2016,37(2):159-168
针对地月系L2点不同任务需求下的低耗能转移轨道设计问题,基于不变流形理论与混合优化技术,深入研究了不同月球借力约束与不同幅值Halo轨道的入轨点(简称HOI点)对转移轨道飞行时间与燃料消耗的影响,给出了HOI点选择策略。首先结合任务要求并考虑月球引力影响,在月球借力点施加不同约束条件,通过微分修正算法调整Halo轨道的稳定流形,设计月球到Halo轨道的转移轨道。采用遗传算法与微分修正算法相结合的混合优化策略,在同时考虑地球停泊轨道高度、倾角、升交点赤经与航迹角等多约束条件下,对燃料最优的地月转移轨道进行研究。最后,分析月球借力高度、借力方位角和不同HOI点对平动点转移轨道飞行时间与燃耗变化量的影响,对于考虑月球借力的地月平动点转移轨道设计与应用具有重要的参考价值。  相似文献   

11.
Pilcher CB 《Astrobiology》2003,3(3):471-486
A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.  相似文献   

12.
张晨  赵育善 《宇航学报》2015,36(8):869-876
使用混合推进方式设计地-月圆型限制性三体模型下的最省燃料转移轨道。将化学发动机以及电推进发动机的燃料消耗总和作为目标函数进行优化,推导一阶必要条件和雅可比矩阵。选择从近地圆轨道出发到达地-月L1附近Halo轨道的转移轨道为例测试上述方法。仿真结果表明,相比发射脉冲固定的情况,混合推进方式进一步降低了燃料消耗,而且给出了飞行时间和燃料消耗不同的组合方式,给予任务设计更大的灵活性。  相似文献   

13.
地月空间NRHO与DRO在月球探测中的应用研究   总被引:1,自引:0,他引:1  
曾豪  李朝玉  彭坤  王平  黄震 《宇航学报》2020,41(7):910-919
针对地月系统三体问题低能往返轨道转移在月球探测中的应用研究,结合天体借力飞行技术与混合优化技术,系统分析了不同目标轨道与借力方位对任务飞行时间与燃料消耗等关键参数的影响,给出了往返轨道设计初值的选择策略。针对轨道设计初值猜想问题,首先采用遗传算法与二体Lambert转移快速确定轨迹拼接点初值。在同时考虑近月点与近地点多约束条件下,基于序列二次规划算法与多重打靶法进一步对燃料最优的地月往返轨道进行研究,并推导了约束方程解析梯度提高设计效率。最后分析近月点高度、不同目标轨道的转移时间与燃耗变化特性,对于考虑月球借力的地月空间轨道往返转移设计及参数选取具有重要的参考价值。  相似文献   

14.
Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge," as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory (New Mexico) to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light-harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation.  相似文献   

15.
Kita R  Rasio F  Takeda G 《Astrobiology》2010,10(7):733-741
The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.  相似文献   

16.
While proposals for settling in the space frontier have appeared in the technical literature for over 20 years, it is in the case of Mars that the ethical dimensions of space settlement have been most studied. Mars raises the questions of the rights and wrongs of the enterprise more forcefully because: (a) Mars may possess a primitive biota; and (b) it may be possible to terraform Mars and transform the entire planet into a living world. The moral questions implicit in space settlement are examined below from the standpoints of four theories of environmental ethics: anthropocentrism, zoocentrism, ecocentrism and preservationism. In the absence of extraterrestrial life, only preservationism concludes that space settlement would be immoral if it was seen to be to the benefit of terrestrial life. Even if Mars is not sterile, protection for Martian life can be argued for either on intrinsic or instrumental grounds from the standpoints of all of these theories. It is argued further that a strict preservationist ethic is untenable as it assumes that human consciousness, creativity, culture and technology stand outside nature, rather than having been a product of natural selection. If Homo sapiens is the first spacefaring species to have evolved on Earth, space settlement would not involve acting ‘outside nature', but legitimately ‘within our nature'.  相似文献   

17.
周敬  胡军  张斌 《宇航学报》2020,41(2):154-165
针对圆型限制性三体问题共线平动点附近周期/拟周期轨道下的相对运动问题,提出一种新的、通用的解析研究方法。在周期/拟周期轨道近似解析解的基础上,结合微分修正方法,获得了精确的周期/拟周期轨道。对周期/拟周期轨道的单值矩阵进行分析,同时借鉴Floquet理论核心思想,建立了六个相对运动模态,并将相对运动表示为六个相对运动模态的线性组合,获得了相对运动的近似解析解。最后在地-月系统圆型限制性三体问题下,以L1点作为研究对象,分别以Halo轨道、Lissajous轨道和Lyapunov轨道为参考轨道,对相对运动模态和相对运动进行仿真分析,说明了相对运动模态的正确性以及相对运动近似解析解的有效性。  相似文献   

18.
介绍了一种利用单片机技术实现高精确度数字式转速测量系统的方法。这种转速测量系统具有测量精确度高、采样速度快、测量范围宽和测量精确度与被测转速无关等优点,具有广阔的应用前景。  相似文献   

19.
双三体系统不变流形拼接成的低成本探月轨道   总被引:3,自引:0,他引:3  
传统的探月轨道设计原理为二体模型框架下的Hohmann变轨理论,但1991年日本的Hiten探月器利用太阳的摄动,用比传统的方法更少的燃料完成了探月任务。利用三体问题非线性系统的不变流形设计了节省燃料的探月轨道。沿用JPL研究组的思路,将太阳-地球-月亮-航天器四体问题分解成太阳-地球-航天器和地球-月亮-航天器两个共面的圆形限制性三体问题,对Hiten类的探月轨道给出了更深刻的数学、力学解释;给出了流形的结构以及更合理的拼接方式;找到了发射位置、发射速度和拼接点;设计出了类似Hiten探月器的探月轨道,可比传统方法节省速度增量12%左右。结果证明了三体系统不变流形在登月轨道设计研究中的可行性和优越性。  相似文献   

20.
Corbet RH 《Astrobiology》2003,3(2):305-315
If the signals being sought in search for extraterrestrial intelligence (SETI) programs exist but are brief (for example, they are produced intermittently to conserve energy), then it is essential to know when these signals will arrive at the Earth. Different types of transmitter/receiver synchronization schemes are possible, which vary in the relative amount of effort required by the transmitter and the receiver. The case is made for a scheme that is extremely simple for the receiver: Make observations of a target when it is at maximum angular distance from the Sun (i.e., "opposition"). This strategy requires that the transmitter has accurate knowledge of the distance and proper motion of the Sun and the orbit of the Earth. It is anticipated that within the next 10-20 years it will be possible to detect directly nearby extrasolar planets of approximately terrestrial mass. Since extraterrestrial transmitters are expected to have significantly more advanced technology, it is not unreasonable to expect that they would be able to detect the presence of the Earth and measure its orbit at even greater distances. This strategy is simple to implement, and opposition is also typically the time when observations are easiest to make. Limited opposition surveys contained in a number of all-sky surveys have already been performed. However, full-sky opposition surveys are best suited to detectors with very large fields of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号