首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The synthesis of radar ambiguity functions is approached using burst-pulse time-frequency waveform coding. Noting that the parameters that define the central response of the ambiguity function for these code classes also define the waveform code, a statistical decision procedure based upon the central response is employed to obtain Bayes-type codes. The selection of the code parameters is subject to restrictions imposed by the noncentral response of the ambiguity function. Three classes of random time-frequency codes are treated: 1) uniform amplitude, uniform pulsewidth matched codes; 2) uniform amplitude, nonuniform pulsewidth matched codes; and 3) uniform amplitude, uniform pulsewidth with receiver amplitude mismatch.  相似文献   

2.
It is shown that the volume under the wideband ambiguity function is close to the square of the signal energy. The ambiguity volume is asymptotically conserved as the signal approaches the narrowband case. The narrowband ambiguity volume is a lower bound for the volume of the wideband ambiguity function.  相似文献   

3.
A generalized ambiguity function including the effects of Doppler dispersion is defined as the time cross correlation of the complex envelopes of two signals, both derived from the same basic waveform but with different delays and Doppler effects. The Doppler effects include the frequency shift and expansion or contraction of the modulation time scale. This expansion or contraction is the Doppler dispersion. While the general ambiguity function cannot be expressed directly in terms of the Woodward or undispersed ambiguity function, its squared magnitude can be expressed in terms of the Woodward ambiguity function. The relation is not simple, being an integral form. Nevertheless, since the Woodward ambiguity function is known for many signals, the relation may simplify the determination of the squared magnitude of the general ambiguity function. We consider the clutter output of a matched filter or correlation receiver where the receiver is matched to a waveform having a specific delay and specific time compression. The variance of the clutter output is the two-dimensional convolution of the clutter ``scattering function' with the squared magnitude of the general ambiguity function. This is a generalization of an earlier result which is formally the same but using the Woodward ambiguity function. This last result is generalized for a mismatched receiver. In such a case, the variance of the clutter output is the double convolution of the clutter scattering function with the cross ambiguity function of the transmitted waveform, modified by the average velocity of the clutter, and the receiver reference waveform.  相似文献   

4.
Taylor's quadriphase coding (J.W. Taylor, Jr. and H.J. Blinchikoff, ibid., vol.23, no.2, p.156-70, Mar. 1988) is investigated for nonzero Doppler shifts. While the zero-Doppler cut of the ambiguity function (i.e. the autocorrelation) strongly resembles that of the corresponding biphase code, the remaining ambiguity function differs considerably. The ambiguity function of quadriphase code 13 is typified by a diagonal ridge as found in linear FM signals. The ambiguity function of quadriphase code 28A resembles the three parallel ridges of Frank code 16  相似文献   

5.
The synthesis of the phase-modulated waveform whose ambiguity function is the optimum estimate of some desired ambiguity function is accomplished by expanding the phase modulation in an orthogonal series. The ambiguity function x (?, ?d)|2 and the value of an arbitrary cost function defined on the (?, ?d) plane are then expressed in terms of the coefficients of the orthogonal series. The optimum waveform can then be determined by solving the variational equations for the coefficients. Numerical examples are presented for the case where it is desired to synthesize a desired ambiguity function x(?, ?d) for some rectangular region of the (?, ?d) plane.  相似文献   

6.
The conventional ambiguity function is extended to include the Doppler distortions of the modulation function. The distinctive features of the extension are the use of the complex notation for wideband signals, and inclusion of the Doppler effect on the signal amplitude. The result is an ambiguity function from which Woodward's form can be found by inspection. It is shown that the well-known volume constraint also applies, in unchanged form, to the generalized ambiguity function. For the volume to be constant, it is not required that the distortions of the modulation function be neglected. Rather, the volume constancy is related to the sinusoidal fluctuations of a modulated carrier-type signal and thus is strictly a matter of the percentage bandwidth of the signal.  相似文献   

7.
On the Ambiguity Function of Random Binary-Phase-Coded Waveforms   总被引:1,自引:0,他引:1  
The ambiguity function of truly random binary-phase-coded waveforms, as an approximation to those waveforms commonly employed in binary-modulated pseudonoise systems/encoded radar systems, is investigated. In a statistical sense, the ambiguity function is analytically derived in which the normally used deterministic cross-correlation process is replaced by its ensemble average. Various Doppler filter responses are presented and discussed. The results are compared with those obtained by transmitting an aperiodic maximum length pseudorandom sequence. It is shown that the ambiguity function of the latter case is closely represented by the ensemble-average response of the truly random binary signal.  相似文献   

8.
An algorithm for velocity ambiguity resolution in coherent pulsed Doppler radar using multiple pulse repetition frequencies (PRF) is presented. It relies on the choice of particular values for the PRFs. The folded frequency of the target signal is obtained by averaging the folded frequency estimates for each PRF, and a quasi maximum likelihood criterion is maximized for ambiguity order estimation. The fast implementation of this nonambiguous estimation procedure is based on the fast Fourier transform (FFT), The proposed waveform allows full exploitation of any (even) number of PRFs, which appears to be important for estimation improvement. The effects of the waveform parameters and the folded frequency estimation variance on the performance of the ambiguity order estimation procedure are evaluated theoretically and through computer simulations. Mean square error (MSE) curves are given to assess the Doppler frequency estimation accuracy. Finally, the new method is compared with a classical technique and the implementation of the algorithm in a clutter environment is addressed.  相似文献   

9.
The matched filter ambiguity function is presented for a burst waveform composed of repeated subbursts, each one of which consists of N pulses in which the phase is varied quadratically from pulse to pulse. The resulting ambiguity function exhibits small residual ambiguities along the delay axis separated by the reciprocal of the pulse repetition frequency (PRF). A cross-ambiguity function is derived which reduces these ambiguities to zero amplitude. A third cross-ambiguity function is presented for a receiver matched to a generalized Hamming weighted repeated quadratic burst. The location in the delay/Doppler plane of the waveform ambiguities for these waveforms is compared with that of an uncoded pulse burst.  相似文献   

10.
The research reported herein deals with the general problem of the selection of radar waveforms. The investigation is specifically concerned with the synthesis of radar signals which are optimum in the sense that they are characterized by ambiguity surfaces minimized over certain predetermined regions of the ambiguity plane. The weighted ambiguity surface is utilized as the weighted error criterion. This error criterion is mathematically tractable and pertinent to radar system performance but is not unduly restrictive as some orientation parameters are left unspecified for subsequent cost or penalty function analysis. The signal optimization is approached by variational techniques augmented by equality and inequality constraints, for example, limiting the amount of bandwidth or frequency modulation to be less than some system requirement. Several examples are presented demonstrating the optimization techniques and providing a minimum error for the stated problem. It is shown that for any given type of amplitude modulation of the radar signal, the variance or dispersion of the ambiguity surface is not decreased for any type of phase modulation added. The optimum signal for an elliptical weighting function is derived for several cases. The minimum error is shown to depend upon the constraints and the unspecified orientation parameters and, for one case, on the second moment of the signal.  相似文献   

11.
It is shown that signal waveforms utilizing discrete frequency modulation (DFM) which are generated using a narrowband or frequency shift algorithm have ambiguity sidelobe distortion which is caused by the approximation of time compression by frequency shift. A logarithmic frequency allocation algorithm is presented which couches the signal design problem in terms of band and step ratios, rather than in terms of bandwidth and frequency steps, and is consistent with the wideband formulation of the ambiguity function. The algorithm makes use of the same basic code generating sequence used for narrowband frequency allocation, but the resulting signal will have invariant ambiguity sidelobe positions for any receiver realization in the delay-time compression plane.  相似文献   

12.
Ambiguities in interferometers with high angular accuracy must be resolved to achieve a practical system design. A new technique for ambiguity resolution is described and is based on monopulse circuitry used with the interferometric elements. The overall angular accuracy of the system is achieved by the interferometer; the angular accuracy of the monopulse subsystem is used to resolve interferometric ambiguities. An expression for the probability of correct ambiguity resolution is derived as a function of element size and monopulse accuracy which indicates that high probability of ambiguity resolution results when the size of the interferometric elements are a fraction of the interferometric baseline. Finally, a comparison between conventional monopulse and interferometric system designs is made for the three principal parameters, signal sensitivity, angular accuracy, and field of view, that dictate the appropriate choice for a particular application. Interferometric systems are more appropriate than monopulse systems for those applications in which angular accuracy and field of view are more important than signal sensitivity.  相似文献   

13.
超宽带技术是一项新兴的无线通信技术,具有极其广阔的发展前景,但目前仅用于室内短距离通信,少见用于航天测控系统。为了将超宽带技术应用于测控系统中,以模糊函数为工具,对脉冲超宽带信号的测量性能进行分析。首先推导矩形脉冲串信号和载波调制矩形脉冲串信号的模糊函数,并对其模糊特性进行仿真分析。在此基础上,主要针对用于测控系统的伪码调制脉冲超宽带信号,利用其模糊函数分析其测距测速性能。结果表明:该超宽带信号具有良好的测距测速性能,其最大无模糊距离为1个伪码周期,最大无模糊多普勒频率为脉冲重复频率的倒数;单脉冲宽度越窄,其测距性能越好而测速性能越差。  相似文献   

14.
A novel efficient technique based on a single slice Radon-ambiguity transform (RAT) for time-delay and time-scale estimation is proposed. The proposed approach combines the narrowband cross-ambiguity function (NBCAF), the wideband cross-ambiguity function (WBCAF), and a single slice RAT to estimate multiple target parameters in noisy environments. The square modulus of Gaussian-enveloped linear frequency modulated (GLFM) signals has high-energy centrality in the ambiguity plane. Its peaks in the NBCAF fall along nearly straight lines whose slopes depend on the Doppler rates of the moving targets. These lines could be effectively detected by computing the entire Radon transform of the NBCAF for all possible angles; however, it is a computationally intensive procedure. It is shown that without calculating the entire RAT, it is possible to estimate target parameters using only a single slice of the RAT, i.e., using an appropriate projection of the NBCAF. It is demonstrated that the proposed method can successfully separate overlapping targets efficiently. The efficiency is achieved due to fast Fourier transform (FFT)-bascd processing, use of a single slice of RAT, and the use of only one-dimensional (1-D) searches.  相似文献   

15.
Range, radial velocity, and acceleration MLE using radar LFM pulsetrain   总被引:5,自引:0,他引:5  
An efficient implementation of the maximum likelihood estimator (MLE) is presented for the estimation of target range, radial velocity, and acceleration when the radar waveform consists of a wideband linear frequency modulated (LFM) pulse train. Analytic properties of the associated wideband ambiguity function are derived; in particular the ambiguity function, with acceleration set to zero, is derived in closed form. Convexity and symmetry properties of the ambiguity function over range, velocity, and acceleration are presented; these are useful for determining region and speed of convergence for recursive algorithms used to compute the MLE. In addition, the Cramer-Rao bound (CRB) is computed in closed form which shows that the velocity bound is decoupled from the corresponding bounds in range and acceleration. A fast MLE is then proposed which uses the Hough transform (HT) to initialize the MLE algorithm. Monte Carlo simulations show that the MLE attains the CRB for low to moderate signal-to-noise depending on the a priori estimates of range, velocity, and acceleration  相似文献   

16.
A procedure to compute the integer ambiguity problem when a GPS receiver is used in a multiple antenna configuration attached to a rotating spacecraft is presented. The method is applied to a simulation of an experimental satellite which uses the GPS receiver for attitude determination  相似文献   

17.
吴洪涛  赵修斌  庞春雷  张良  冯波 《航空学报》2018,39(6):321850-321850
多天线增强了全球卫星导航系统(GNSS)单频单历元姿态测量解算模型的强度,但随着天线数量增加,模糊度维数成倍增加,从模糊度域确定搜索空间的计算量将显著增长。基于此,提出了基于值域的多约束多天线GNSS单频单历元姿态测量新算法:该算法将姿态约束融入值域搜索模型,利用姿态约束条件推导搜索步长,通过姿态域三维搜索确定模糊度搜索空间,以基于最优条件姿态解非迭代近似估计的方法固定模糊度。实验结果表明,新算法中模糊度搜索效率较原方法提高约65.8%,固定模糊度效率较标准迭代算法提高约95.3%,且与标准迭代算法性能相当;所提算法能够实现GNSS单频单历元的模糊度固定和载体全姿态测量,具有较高的正确率。  相似文献   

18.
Ambiguity Resolution in Interferometry   总被引:3,自引:0,他引:3  
A comprehensive theory of interferometry from a system viewpoint with particular emphasis on the ambiguity resolution problem is developed. The derived error equations include contributions from all system uncertainties, i.e., phase measurement, frequency, and element phase center position errors in three dimensions. The direction-of-arrival errors are inversely proportional to the interferometer baseline and it is customary to make the baseline large enough to meet the accuracy requirements. A system with a baseline greater than a half-wavelength results in the well known direction-of-arrival ambiguity problem with the addition of a third element to each baseline being a common method for resolving the ambiguity. It is shown that contrary to previous thinking there are many equally optimal positions for adding the third element to resolve the ambiguity. In addition, it is shown how the measurement made to resolve the ambiguity can also be applied to increase the accuracy of the angle-of-arrival measurement. A central result is the derivation of expressions specifying the probability of correct resolution of ambiguities as a function of system parameters and system errors. Moreover the concept of an acceptance criterion designed to reduce processing of erroneous measurements is developed. Narrowing the criterion reduces the percentage of data accepted for processing, but increases the probability of correct ambiguity resolution. This is analogous to the relationship between the probability of detection and the probability of false alarm in radar theory.  相似文献   

19.
The nature of physical phenomena is such that scattering from portions of an object, a number of objects, or clutter, is not completely unrelated; the underlying environment causes some degree of order in the phenomenon. Radar partial coherence theory describes a structure for the general target, or clutter, and its relationship to radar cross section, waveform coding, and the radar output signal. The clutter ambiguity function is introduced for extended bodies and embraces the (Woodward) ambiguity function for a point target. Due to nonlinear effects caused by partial coherence within the general target, radar signals and targets are formulated in terms of mutual coherence functions. The basic quantities describing the radar output are 1) the radar mutual coherence function (formulated in terms of the radar waveform) and 2) the target mutual coherence function which depends upon target properties, physical environment, and viewing aspect. Random noise (independent point scatterers) and partially coherent portions of reflecting bodies are made accountable in the theory. Partial coherence effects are treated as patches of reflected energy: self-coherent energy patches plus mutually coherent energy among the patches.  相似文献   

20.
In radar signal design it is well known that a fixed volume under the ambiguity surface representing signal energy can only be shifted but not eliminated in the delay-Doppler plane because of the constraint imposed by Woodward's total volume invariance. Rihaczek has shown that periodic signal repetition, though appealing to increased energy, increases the time-bandwidth product at the expense of introducing pronounced ambiguities in the delay-Doppler plane, and thus self-clutter is generated when signals are repeated in the time domain to increase energy. The undesirable self-clutter has a masking effect on targets in different resolution cells thereby limiting performance. An analysis is presented to show that a class of waveforms described in an earlier paper as the subcomplementary set of sequences which are basically repetitive and Hadamard coded, exhibit the property of cancelling self-clutter completely in the delay-Doppler plane if their ambiguity functions are combined. By this technique it is possible to repeat contiguously a basic waveform N times in a prescribed manner to increase signal energy and to cancel totally the resulting self-clutter by combining the ambiguity functions of N different repetitive waveforms which are Hadamard coded. A convenient matrix method to combine the ambiguity functions of subcomplementary sequences, which is an extension of known methods to derive the ambiguity function of repetitive waveforms, is presented. Radar implementation considerations and comparison of performance with various forms of linear frequency modulation (FM) are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号