共查询到20条相似文献,搜索用时 31 毫秒
1.
美空军航天司令部在高1万英尺(约3048米)的夏威夷火山上设立的毛伊(Maui)航天监测站,使用光学、光电和红外探测器识别空间人造物体,取得了良好的效果。光学望远镜能分辨出运行在约37800千米地球同步轨道上的小至8厘米的人造物体。试验表明,光学探测器是分辨地球同步轨道上人造物体的主要手段。由于离地球甚远,红外成像技术难以实现,而雷达探测器由于功率损失太大以及地球同步轨道物体与地面相对运动太小也十分困难。美航天司令部航天监测中心采用光学探测器对空跟踪,迄今已发现运行在地球轨道上的人造物体大约有7… 相似文献
2.
空间碎片的清除策略是实现地基激光主动清除厘米级空间碎片的关键技术之一.为了制定有效的清除策略,首先对在碎片轨道不同位置上速度分量的变化对其新轨道近地点高度的影响进行了研究,指明了3种不同速度分量变化的降轨效果的差异;然后结合地基激光的几何和物理特性,推导了确定有效变轨区域的约束条件;最后据此提出了地基激光以连续脉冲变轨方式清除空间碎片的通用策略,并通过仿真实验,实现了利用地基激光清除空间碎片的目的,也验证了该清除策略的有效性. 相似文献
3.
目前,外层空间的轨道碎片呈增长趋势,已经对航天活动构成威胁。自1957年发射第一颗人造地球卫星开始,迄今已经进行了约3400次发射。大量卫星和末级火箭进入了外层空间,由于自然净化等作用,有些末级火箭和卫星已经被清除出空间。通过光学仪器和雷达的跟踪观测得知,在编目的22000个碎块中有15000个已经陨落。留在空间的约7000个物体中,只有大约350个是工作卫星,仅为编目物体总数的5%。近15年来,空间物体以每年150个的数目增长。未来的增长率将如何?是什么影响着空间碎块的增与减?有哪些措施可以控… 相似文献
4.
5.
6.
未来航天发射情况直接影响空间碎片环境,必须对其进行合理规划,以维护外空长期可持续发展.利用中国自主建立的空间碎片长期演化模型(SOLEM),结合蒙特卡洛方法,量化分析了空间物体发射数量、发射质量、发射面积等因子对未来空间碎片环境的影响,进一步研究了大型星座造成的未来空间物体碰撞次数和碎片数量的增加.仿真结果可为合理规划未来的航天发射规模提供理论依据. 相似文献
7.
8.
根据碎片云从破碎点开始向空间扩散过程中碎片密度和形状的变化规律,以几何形状和起主要作用的因素为特征,定义了球形、椭球形、绳形、螺旋线形、全方位弥漫直至球壳形六个演变阶段.论述了在各个阶段的主要特征和对演变过程起主要作用的因素.总结了与演变过程相关的轨道运动理论和研究方法,分析了各个阶段演变的动力学原理.在球形阶段起主要作用的是分离速度;椭球形阶段可以利用线性化相对运动方程进行分析;绳形与螺旋线形在几何上有质变,但都有结点和结线,并可以利用速度增量理论分析和解释其存在的原因.轨道摄动力消除了结点和结线,导致碎片云的全方位弥漫,并最终使碎片云趋于球壳形.推导和罗列了各阶段转换标志点时刻的计算公式,利用计算机仿真的方法,给出了近地轨道各个阶段碎片云分布示意图,验证了演变过程阶段划分的合理性. 相似文献
9.
朱毅麟 《中国空间科学技术》1996,16(6):19-28
根据国际上近年来对空间碎片跟踪、观测、统计分析以及对从轨道上回收的试验装置和样品的分析研究,介绍了地球周围空间环境中存在的空间碎片的数量、质量及其分布的最新状况。 相似文献
10.
非相干散射雷达的空间碎片参数统计分析 总被引:1,自引:1,他引:0
采用匹配滤波方法处理了非相干散射雷达的原始采样数据(时长约7h), 共检测到394个空间碎片, 估算了其轨道高度、径向速度、散射截面、等效直径及径向加速度等参数, 统计分析了这些参数的变化特征, 得到穿过雷达 波束的空间碎片流量约为60h-1, 信噪比为10~1000, 空间碎片主要分布在600~1100km和1400~1600km两个高度区间, 散射截面 10-5~10-2m2, 等效直径3~10cm, 径向速度-1.5~1.5km·s-1, 径向加速度20~90m·s-2, 这对于中国的空间碎片探测与研究具有重要参考意义. 相似文献
11.
I. Molotov V. Agapov V. Titenko Z. Khutorovsky Yu. Burtsev I. Guseva V. Rumyantsev M. Ibrahimov G. Kornienko A. Erofeeva V. Biryukov V. Vlasjuk R. Kiladze R. Zalles P. Sukhov R. Inasaridze G. Abdullaeva V. Rychalsky V. Kouprianov O. Rusakov E. Litvinenko E. Filippov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(7):1022-1028
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007. 相似文献
12.
During recent years, A de-orbit disposal of SinoSat 2 satellite and the depletion of the residual propellant after SC/LV separation for all LM-4 series launch vehicles were carried out. Stuffed Whipple Shields based on hypervelocity impact particles were developed. Routine observation and collision avoidance were performed. The main progress in space debris research will be introduced from three aspects: mitigation, spacecraft protection, observation and collision avoidance. 相似文献
13.
T. Yanagisawa H. Kurosaki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We have derived a tri-axial ellipsoidal model of an LEO object, a Cosmos 2082 rocket body, including its rotational axis direction, rotation period, precession, and a compositional parameter, using only light curve data from an optical telescope. The brightness of the object was monitored for two days and least-squares fitting was used to determine these values. The derived axial ratios are 100:18:18, the coordinates of the rotational axis direction on the celestial sphere are R.A. = 305.8° and Dec. = 2.6°, and its observed average rotation period is 41 s. When precession is considered, its amplitude and precession period are 30.5° and 29.4 min. These results show that optical light curve data are sufficient to determine the shapes and the motions of LEO objects. 相似文献
14.
Carolin Früh Thomas Schildknecht 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In survey series of unknown Earth orbiting objects, no a priori orbital elements are available. In surveys of wide field telescopes possibly many non-resolved object images are present on the single frames of the series. Reliable methods have to be found to associate the object images stemming from the same object with each other, so-called linking. The presence of cosmic ray events, so-called Cosmics, complicates reliable linking of non-resolved images. The tracklets of object images allow to extract exact positions for a first orbit determination. 相似文献
15.
C.L. Stokely E.G. Stansbery 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(7):1004-1009
Data from the Massachusetts Institute of Technology Lincoln Laboratory Long Range Imaging Radar (known as the Haystack radar) have been used in the past to examine families of objects from individual satellite breakups or families of orbiting objects that can be isolated in altitude and inclination. This is possible because, for some time after a breakup, the debris cloud of particles can remain grouped together in similar orbit planes. This cloud will be visible to the radar, in fixed staring mode, for a short time twice each day, as the orbit plane moves through the field of view. There should be a unique three-dimensional pattern in observation time, range, and range rate which can identify the cloud. Eventually, through slightly differing precession rates of the right ascension of ascending node of the debris cloud, the observation time becomes distributed so that event identification becomes much more difficult. 相似文献
16.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(3):1670-1681
The world’s economy has become heavily dependent on the services provided by satellites. With the exponential increase in satellite launches, the population of defunct or inactive hardware in space has grown substantially. This is especially true in sensitive orbits such as the Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) regimes. These objects, collectively known as orbital debris, can reach speeds of up to 28 000km h?1 in LEO. At these orbital speeds, even the smallest of objects can pose a considerable threat to operational satellites or astronauts. This makes the monitoring, and detection, of these objects of the utmost importance. This work describes the latest detection strategy used in one of Europe’s largest Space Situational Awareness (SSA) installation; the BIstatic RAdar for LEo Survey (BIRALES) space debris radar. We present a novel bottom-up approach that makes use of single-linkage clustering to identify faint radar streaks in spectrogram data. Tests on synthetic data have shown that the detection strategy presented in this study obtains a higher detection rate when it is compared against existing methods. Unlike other approaches, this detection strategy, using the Multi-beam streak detection strategy (MSDS) algorithm, was still able to recall 90% of the track information at an Signal-to-Noise Ratio (SNR) of 2dB. 相似文献
17.
The rapid increase of space debris population has posed serious threaten to the safety of human space activities and became a global issue. How to enhance the technical capabilities of space debris threat coping ability is of great significance to the sustainable development of space activities, the further development, and utilization of outer space. In this paper, we describe space debris research progress of China on observation, collision avoidance, protection, mitigation, regulation, and standard during the last twenty years, and look forward to the future development direction of space debris. 相似文献
18.
Rong-yu Sun Chang-yin Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Optical survey is a main technique for observing space debris, and precisely measuring the positions of space debris is of great importance. Due to several factors, e.g. the angle object normal to the observer, the shape as well as the attitude of the object, the variations of observed characteristics for low earth orbital space debris are distinct. When we look at optical CCD images of observed objects, the size and brightness are varying, hence it’s difficult to decide the threshold during centroid measurement and precise astrometry. Traditionally the threshold is given empirically and constantly in data reduction, and obviously it’s not suitable for data reduction of space debris. Here we offer a solution to provide the threshold. Our method assumes that the PSF (point spread function) is Gaussian and estimates the signal flux by a directly two-dimensional Gaussian fit, then a cubic spline interpolation is performed to divide each initial pixel into several sub-pixels, at last the threshold is determined by the estimation of signal flux and the sub-pixels above threshold are separated to estimate the centroid. A trail observation of the fast spinning satellite Ajisai is made and the CCD frames are obtained to test our algorithm. The calibration precision of various threshold is obtained through the comparison between the observed equatorial position and the reference one, the latter are obtained from the precise ephemeris of the satellite. The results indicate that our method reduces the total errors of measurements, it works effectively in improving the centering precision of space debris images. 相似文献
19.
P. Papushev Yu. KaravaevM. Mishina 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
On the base of the photometrical data an analysis of the periods and light curves of the uncontrolled artificial satellites was performed. 相似文献
20.
在中国首次使用欧洲非相干散射雷达三站系统研究空间碎片.以美国OSCAR-3报废业余通信卫星的三站雷达探测散射截面为例,采用欧洲非相干散射雷达三站标准电离层实验模式,分析三站雷达目标散射截面的差异性.比较三站雷达的探测结果表明,Sodanky站雷达散射截面比Tromso站散射截面精度提高5倍;按照中国科学院国家天文台预报理论模型轨道计算,通过理论方向图修正雷达散射截面后,在不知道美国太空监测网所公布的数值时,Tromso站雷达散射截面具有参考价值.计算结果证实三站雷达能提供较为准确的雷达散射截面. 相似文献