共查询到20条相似文献,搜索用时 15 毫秒
1.
André Balogh Réjean Grard Sean C. Solomon Rita Schulz Yves Langevin Yasumasa Kasaba Masaki Fujimoto 《Space Science Reviews》2007,132(2-4):611-645
Mercury is a very difficult planet to observe from the Earth, and space missions that target Mercury are essential for a comprehensive
understanding of the planet. At the same time, it is also difficult to orbit because it is deep inside the Sun’s gravitational
well. Only one mission has visited Mercury; that was Mariner 10 in the 1970s. This paper provides a brief history of Mariner
10 and the numerous imaginative but unsuccessful mission proposals since the 1970s for another Mercury mission. In the late
1990s, two missions—MESSENGER and BepiColombo—received the go-ahead; MESSENGER is on its way to its first encounter with Mercury
in January 2008. The history, scientific objectives, mission designs, and payloads of both these missions are described in
detail. 相似文献
2.
G. Cremonese A. Sprague J. Warell N. Thomas L. Ksamfomality 《Space Science Reviews》2007,132(2-4):291-306
The Mariner 10 spacecraft made three flyby passes of Mercury in 1974 and 1975. It imaged a little less than half of the surface
and discovered Mercury had an intrinsic magnetic field. This paper briefly describes the surface of Mercury as seen by Mariner
10 as a backdrop to the discoveries made since then by ground-based observations and the optimistic anticipation of new discoveries
by MESSENGER and BepiColombo spacecraft that are scheduled for encounter in the next decade. 相似文献
3.
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard the MErcury
Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft en route to the planet Mercury. MASCS consists
of a small Cassegrain telescope with 257-mm effective focal length and a 50-mm aperture that simultaneously feeds an UltraViolet
and Visible Spectrometer (UVVS) and a Visible and InfraRed Spectrograph (VIRS). UVVS is a 125-mm focal length, scanning grating,
Ebert-Fastie monochromator equipped with three photomultiplier tube detectors that cover far ultraviolet (115–180 nm), middle
ultraviolet (160–320 nm), and visible (250–600 nm) wavelengths with an average 0.6-nm spectral resolution. It will measure
altitude profiles of known species in order to determine the composition and structure of Mercury’s exosphere and its variability
and will search for previously undetected exospheric species. VIRS is a 210-mm focal length, fixed concave grating spectrograph
equipped with a beam splitter that simultaneously disperses the spectrum onto a 512-element silicon visible photodiode array
(300–1050 nm) and a 256-element indium-gallium-arsenide infrared photodiode array 850–1,450 nm. It will obtain maps of surface
reflectance spectra with a 5-nm resolution in the 300–1,450 nm wavelength range that will be used to investigate mineralogical
composition on spatial scales of 5 km. UVVS will also observe the surface in the far and middle ultraviolet at a 10-km or
smaller spatial scale. This paper summarizes the science rationale and measurement objectives for MASCS, discusses its detailed
design and its calibration requirements, and briefly outlines observation strategies for its use during MESSENGER orbital
operations around Mercury. 相似文献
4.
Maria T. Zuber Oded Aharonson Jonathan M. Aurnou Andrew F. Cheng Steven A. Hauck II Moritz H. Heimpel Gregory A. Neumann Stanton J. Peale Roger J. Phillips David E. Smith Sean C. Solomon Sabine Stanley 《Space Science Reviews》2007,131(1-4):105-132
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the
Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the
terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s
spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution
if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were
molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core
is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative
of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a
core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate
fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current
knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise
of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of
that evolution to the planet’s geological history. 相似文献
5.
MESSENGER: Exploring Mercury’s Magnetosphere 总被引:1,自引:0,他引:1
James A. Slavin Stamatios M. Krimigis Mario H. Acuña Brian J. Anderson Daniel N. Baker Patrick L. Koehn Haje Korth Stefano Livi Barry H. Mauk Sean C. Solomon Thomas H. Zurbuchen 《Space Science Reviews》2007,131(1-4):133-160
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity
to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in
many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands
off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic
particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere,
allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar
wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects
may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the
only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive
ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived,
∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic
tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces
in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling
of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are
expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions
all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close
in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the
solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents
is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field.
MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin
of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review
what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the
outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere. 相似文献
6.
Dipak K. Srinivasan Mark E. Perry Karl B. Fielhauer David E. Smith Maria T. Zuber 《Space Science Reviews》2007,131(1-4):557-571
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Radio Frequency (RF) Telecommunications Subsystem
is used to send commands to the spacecraft, transmit information on the state of the spacecraft and science-related observations,
and assist in navigating the spacecraft to and in orbit about Mercury by providing precise observations of the spacecraft’s
Doppler velocity and range in the line of sight to Earth. The RF signal is transmitted and received at X-band frequencies
(7.2 GHz uplink, 8.4 GHz downlink) by the NASA Deep Space Network. The tracking data from MESSENGER will contribute significantly
to achieving the mission’s geophysics objectives. The RF subsystem, as the radio science instrument, will help determine Mercury’s
gravitational field and, in conjunction with the Mercury Laser Altimeter instrument, help determine the topography of the
planet. Further analysis of the data will improve the knowledge of the planet’s orbital ephemeris and rotation state. The
rotational state determination includes refined measurements of the obliquity and forced physical libration, which are necessary
to characterize Mercury’s core state. 相似文献
7.
The Mercury Dual Imaging System on the MESSENGER Spacecraft 总被引:1,自引:0,他引:1
S. Edward Hawkins III John D. Boldt Edward H. Darlington Raymond Espiritu Robert E. Gold Bruce Gotwols Matthew P. Grey Christopher D. Hash John R. Hayes Steven E. Jaskulek Charles J. Kardian Jr. Mary R. Keller Erick R. Malaret Scott L. Murchie Patricia K. Murphy Keith Peacock Louise M. Prockter R. Alan Reiter Mark S. Robinson Edward D. Schaefer Richard G. Shelton Raymond E. Sterner II Howard W. Taylor Thomas R. Watters Bruce D. Williams 《Space Science Reviews》2007,131(1-4):247-338
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin
and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC
is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color
filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled
device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and
the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward
from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel
binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at
Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission
angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor
images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct
a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips.
Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement
history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper
summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing
units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated
from MDIS data. 相似文献
8.
9.
William V. Boynton Ann L. Sprague Sean C. Solomon Richard D. Starr Larry G. Evans William C. Feldman Jacob I. Trombka Edgar A. Rhodes 《Space Science Reviews》2007,131(1-4):85-104
The instrument suite on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft is well suited
to address several of Mercury’s outstanding geochemical problems. A combination of data from the Gamma-Ray and Neutron Spectrometer
(GRNS) and X-Ray Spectrometer (XRS) instruments will yield the surface abundances of both volatile (K) and refractory (Al,
Ca, and Th) elements, which will test the three competing hypotheses for the origin of Mercury’s high bulk metal fraction:
aerodynamic drag in the early solar nebula, preferential vaporization of silicates, or giant impact. These same elements,
with the addition of Mg, Si, and Fe, will put significant constraints on geochemical processes that have formed the crust
and produced any later volcanism. The Neutron Spectrometer sensor on the GRNS instrument will yield estimates of the amount
of H in surface materials and may ascertain if the permanently shadowed polar craters have a significant excess of H due to
water ice. A comparison of the FeO content of olivine and pyroxene determined by the Mercury Atmospheric and Surface Composition
Spectrometer (MASCS) instrument with the total Fe determined through both GRNS and XRS will permit an estimate of the amount
of Fe present in other forms, including metal and sulfides. 相似文献
10.
Charles E. Schlemm II Richard D. Starr George C. Ho Kathryn E. Bechtold Sarah A. Hamilton John D. Boldt William V. Boynton Walter Bradley Martin E. Fraeman Robert E. Gold John O. Goldsten John R. Hayes Stephen E. Jaskulek Egidio Rossano Robert A. Rumpf Edward D. Schaefer Kim Strohbehn Richard G. Shelton Raymond E. Thompson Jacob I. Trombka Bruce D. Williams 《Space Science Reviews》2007,131(1-4):393-415
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of
the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital
phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft
will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface
of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12°
field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis
due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority
of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes
XRS’s science objectives, technical design, calibration, and mission observation strategy. 相似文献
11.
The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft 总被引:1,自引:0,他引:1
G. Bruce Andrews Thomas H. Zurbuchen Barry H. Mauk Horace Malcom Lennard A. Fisk George Gloeckler George C. Ho Jeffrey S. Kelley Patrick L. Koehn Thomas W. LeFevere Stefano S. Livi Robert A. Lundgren Jim M. Raines 《Space Science Reviews》2007,131(1-4):523-556
The Energetic Particle and Plasma Spectrometer (EPPS) package on the MErcury Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) mission to Mercury is composed of two sensors, the Energetic Particle Spectrometer (EPS) and the Fast
Imaging Plasma Spectrometer (FIPS). EPS measures the energy, angular, and compositional distributions of the high-energy components
of the in situ electrons (>20 keV) and ions (>5 keV/nucleon), while FIPS measures the energy, angular, and compositional distributions
of the low-energy components of the ion distributions (<50 eV/charge to 20 keV/charge). Both EPS and FIPS have very small
footprints, and their combined mass (∼3 kg) is significantly lower than that of comparable instruments. 相似文献
12.
J. Wicht M. Mandea F. Takahashi U. R. Christensen M. Matsushima B. Langlais 《Space Science Reviews》2007,132(2-4):261-290
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude,
however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation
of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called
magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo
simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive
a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal
evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal
field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations
do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or
both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large
inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation
of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause
the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic
field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through
the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and
mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058,
2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields
spatial structure, its degree of axisymmetry, and its secular variation. 相似文献
13.
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. 相似文献
14.
J. S. Kaastra A. M. Bykov S. Schindler J. A. M. Bleeker S. Borgani A. Diaferio K. Dolag F. Durret J. Nevalainen T. Ohashi F. B. S. Paerels V. Petrosian Y. Rephaeli P. Richter J. Schaye N. Werner 《Space Science Reviews》2008,134(1-4):1-6
We present the work of an international team at the International Space Science Institute (ISSI) in Bern that worked together to review the current observational and theoretical status of the non-virialised X-ray emission components in clusters of galaxies. The subject is important for the study of large-scale hierarchical structure formation and to shed light on the “missing baryon” problem. The topics of the team work include thermal emission and absorption from the warm-hot intergalactic medium, non-thermal X-ray emission in clusters of galaxies, physical processes and chemical enrichment of this medium and clusters of galaxies, and the relationship between all these processes. One of the main goals of the team is to write and discuss a series of review papers on this subject. These reviews are intended as introductory text and reference for scientists wishing to work actively in this field. The team consists of sixteen experts in observations, theory and numerical simulations. 相似文献
15.
James E. Richardson H. Jay Melosh Natasha A. Artemeiva Elisabetta Pierazzo 《Space Science Reviews》2005,117(1-2):241-267
The cratering event produced by the Deep Impact mission is a unique experimental opportunity, beyond the capability of Earth-based
laboratories with regard to the impacting energy, target material, space environment, and extremely low-gravity field. Consequently,
impact cratering theory and modeling play an important role in this mission, from initial inception to final data analysis.
Experimentally derived impact cratering scaling laws provide us with our best estimates for the crater diameter, depth, and
formation time: critical in the mission planning stage for producing the flight plan and instrument specifications. Cratering
theory has strongly influenced the impactor design, producing a probe that should produce the largest possible crater on the
surface of Tempel 1 under a wide range of scenarios. Numerical hydrocode modeling allows us to estimate the volume and thermodynamic
characteristics of the material vaporized in the early stages of the impact. Hydrocode modeling will also aid us in understanding
the observed crater excavation process, especially in the area of impacts into porous materials. Finally, experimentally derived
ejecta scaling laws and modeling provide us with a means to predict and analyze the observed behavior of the material launched
from the comet during crater excavation, and may provide us with a unique means of estimating the magnitude of the comet’s
gravity field and by extension the mass and density of comet Tempel 1. 相似文献
16.
Karl-Heinz Glassmeier Hermann Boehnhardt Detlef Koschny Ekkehard Kührt Ingo Richter 《Space Science Reviews》2007,128(1-4):1-21
The ROSETTA Mission, the Planetary Cornerstone Mission in the European Space Agency’s long-term programme Horizon 2000, will
rendezvous in 2014 with comet 67P/Churyumov-Gerasimenko close to its aphelion and will study the physical and chemical properties
of the nucleus, the evolution of the coma during the comet’s approach to the Sun, and the development of the interaction region
of the solar wind and the comet, for more than one year until it reaches perihelion. In addition to the investigations performed
by the scientific instruments on board the orbiter, the ROSETTA lander PHILAE will be deployed onto the surface of the nucleus.
On its way to comet 67P/Churyumov-Gerasimenko, ROSETTA will fly by and study the two asteroids 2867 Steins and 21 Lutetia. 相似文献
17.
We review the structure and dynamics of the solar chromosphere with emphasis on the quiet Sun and properties that are relevant to element fractionation mechanisms. Attention is given to the chromospheric magnetic field, its connections to the photosphere, and to the dynamical evolution of the chromosphere. While some profound advances have been made in the “unmagnetized” chromosphere, our knowledge of the magnetically controlled chromosphere, more relevant for the discussion of element fractionation, is limited. Given the dynamic nature of the chromosphere and the poorly understood magnetic linkage to the corona, it is unlikely that we will soon know the detailed processes leading to FIP fractionation. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
18.
阐述了分布式计算机系统的基本原理以及互连方式,对其功能、特点进行了分析.为使该系统在民航等系统中的应用和研究更加广泛,文中还给出了一些应用实例. 相似文献
19.
贺金社 《郑州航空工业管理学院学报(管理科学版)》2003,21(2):3-6
收入对职工具有最直接的激励作用,而这一作用的保持与增强则取决于收入分配的科学性与合理性。国有企业正值改制时期,急需建立激励机制,制定科学合理的收入分配方案。综观国内外研究现状.企业职工的收入分配在实践中的标准是多样的,行动是盲目的。因此,探讨具有坚实经济理论支持的判断企业职工收入分配科学合理与否的理论标准,具有十分重要的意义。 相似文献
20.