首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Method of Passive Image Based Crater Autonomous Detection   总被引:1,自引:0,他引:1  
  相似文献   

2.
The presence of rocks in the ejecta of craters at the InSight landing site in southwestern Elysium Planitia indicates a strong, rock-producing unit at depth. A finer regolith above is inferred by the lack of rocks in the ejecta of 10-m-scale craters. This regolith should be penetrable by the mole of the Heat Flow and Physical Properties Package (HP3). An analysis of the size-frequency distribution (SFD) of 7988 rocky ejecta craters (RECs) across four candidate landing ellipses reveals that all craters >200 m in diameter and \({<}750 \pm 30\ \mbox{Ma}\) in age have boulder-sized rocks in their ejecta. The frequency of RECs however decreases significantly below this diameter (\(D\)), represented by a roll-off in the SFD slope. At \(30\ \text{m} < D < 200\ \text{m}\), the slope of the cumulative SFD declines to near zero at \(D < 30\ \text{m}\). Surface modification, resolution limits, or human counting error cannot account for the magnitude of this roll-off. Rather, a significant population of <200 m diameter fresh non-rocky ejecta craters (NRECs) here indicates the presence of a relatively fine-grained regolith that prevents smaller craters from excavating the strong rock-producing unit. Depth to excavation relationships and the REC size thresholds indicate the region is capped by a regolith that is almost everywhere 3 m thick but may be as thick as 12 to 18 m. The lower bound of the thickness range is independently confirmed by the depth to the inner crater in concentric or nested craters. The data indicate that 85% of the InSight landing region is covered by a regolith that is at least 3 m thick. The probability of encountering rockier material at depths >3 m by the HP3 however increases significantly due to the increase in boulder-size rocks in the lower regolith column, near the interface of the bedrock.  相似文献   

3.
Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop crater detection algorithms. This paper presents a novel approach to automatically detect craters on planetary surfaces. The approach contains two parts: crater candidate region selection and crater detection. In the first part, crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector. Matrix-pattern-oriented least squares support vector machine (MatLSSVM), as the matrixization version of least square support vector machine (SVM), inherits the advantages of least squares support vector machine (LSSVM), reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM. The second part of the approach employs MatLSSVM to design classifier for crater detection. Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%. In addition, the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection. The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection.  相似文献   

4.
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed \(\leq 4\) Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter’s orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn’s orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.  相似文献   

5.
辛鹏飞  李德伦  刘鑫  张沛  陈磊  刘宾 《航空学报》2021,42(1):523897-523897
针对深空探测中(尤其是月球、火星和小行星探测)大型着陆探测器对小型移动机器人作为重要科学载荷的需求,综述了国内外小型星表探测机器人领域的发展现状,着重介绍了面向月球探测、火星探测和小行星探测的代表性小型机器人的任务需求、基本构型和样机测试情况。在系统总结小型星表探测机器人关键技术及发展趋势的基础上,提出了未来中国在该领域发展、完善的建议。分析表明:月球探测的高研究价值区域多位于崎岖地形中,体积小、运动性能强的轮式、足式机器人受到广泛关注,日本、英国、瑞士等国家已提出多种小型机器人概念,并研发原理样机进行测试试验;针对火星等存在稀薄大气层的星体探测,定位于配置组件的旋翼式无人机已成为国内外关注和研制的重点之一,同时面向特殊极端地形探测的小型轮式、翻滚式机器人也进入到原理样机测试阶段,美国在这些领域均保持突出优势;针对小行星等小质量、弱引力天体探测,小型翻滚式机器人成为其着陆探测的主流,美国开展了原理样机设计与试验,日本通过"隼鸟2号"任务已成功实现在轨应用。  相似文献   

6.
Of the terrestrial planets, Earth and Mercury have self-sustained fields while Mars and Venus do not. Magnetic field data recorded at Ganymede have been interpreted as evidence of a self-generated magnetic field. The other icy Galilean satellites have magnetic fields induced in their subsurface oceans while Io and the Saturnian satellite Titan apparently are lacking magnetic fields of internal origin altogether. Parts of the lunar crust are remanently magnetized as are parts of the crust of Mars. While it is widely accepted that the magnetization of the Martian crust has been caused by an early magnetic field, for the Moon alternative explanations link the magnetization to plasma generated by large impacts. The necessary conditions for a dynamo in the terrestrial planets and satellites are the existence of an iron-rich core that is undergoing intense fluid motion. It is widely accepted that the fluid motion is caused by convection driven either by thermal buoyancy or by chemical buoyancy or by both. The chemical buoyancy is released upon the growth of an inner core. The latter requires a light alloying element in the core that is enriched in the outer core as the solid inner core grows. In most models, the light alloying element is assumed to be sulfur, but other elements such as, e.g., oxygen, silicon, and hydrogen are possible. The existence of cores in the terrestrial planets is either proven beyond reasonable doubt (Earth, Mars, and Mercury) or the case for a core is compelling as for Venus and the Moon. The Galilean satellites Io and Ganymede are likely to have cores judging from Galileo radio tracking data of the gravity fields of these satellites. The case is less clear cut for Europa. Callisto is widely taken as undifferentiated or only partially differentiated, thereby lacking an iron-rich core. Whether or not Titan has a core is not known at the present time. The terrestrial planets that do have magnetic fields either have a well-established inner core with known radius and density such as Earth or are widely agreed to have an inner core such as Mercury. The absence of an inner core in Venus, Mars, and the Moon (terrestrial bodies that lack fields) is not as well established although considered likely. The composition of the Martian core may be close to the Fe–FeS eutectic which would prevent an inner core to grow as long as the core has not cooled to temperatures around 1500 Kelvin. Venus may be on the verge of growing an inner core in which case a chemical dynamo may begin to operate in the geologically near future. The remanent magnetization of the Martian and the lunar crust is evidence for a dynamo in Mars’ and possibly the Moon’s early evolution and suggests that powerful thermally driven dynamos are possible. Both the thermally and the chemically driven dynamo require that the core is cooled at a sufficient rate by the mantle. For the thermally driven dynamo, the heat flow from the core into the mantle must by larger than the heat conducted along the core adiabat to allow a convecting core. This threshold is a few mW?m?2 for small planets such as Mercury, Ganymede, and the Moon but can be as large as a few tens mW?m?2 for Earth and Venus. The buoyancy for both dynamos must be sufficiently strong to overcome Ohmic dissipation. On Earth, plate tectonics and mantle convection cool the core efficiently. Stagnant lid convection on Mars and Venus are less efficient to cool the core but it is possible and has been suggested that Mars had plate tectonics in its early evolution and that Venus has experienced episodic resurfacing and mantle turnover. Both may have had profound implications for the evolution of the cores of these planets. It is even possible that inner cores started to grow in Mars and Venus but that the growth was frustrated as the mantles heated following the cessation of plate tectonics and resurfacing. The generation of Ganymede’s magnetic field is widely debated. Models range from magneto-hydrodynamic convection in which case the field will not be self-sustained to chemical and thermally-driven dynamos. The wide range of possible compositions for Ganymede’s core allows models with a completely liquid near eutectic Fe–FeS composition as well as models with Fe inner cores or cores in with iron snowfall.  相似文献   

7.
尚天祥  王景川  董凌峰  陈卫东 《航空学报》2021,42(1):524166-524166
同步建图与定位(SLAM)可实现月球车在未知复杂月面环境下的定位与导航,月球表面由陨坑、石头等起伏地形构成,缺乏树木、建筑物等地面存有的显著特征,大量特征不显著的点云数据会对月球车定位精度和实时性造成影响。本文提出了一种针对月面环境的显著特征点云提取方法以及基于曲面定位能力估计的增量式优化算法,通过Fisher信息矩阵计算曲面定位能力指标,获取机器人位姿估计的不确定性测量,利用增量式的SLAM方案进行优化,用于提高定位精度与实时性。通过在Gazebo (物理仿真平台)仿真场景下的测试,验证了算法性能。  相似文献   

8.
Models of the origins of gas giant planets and ‘ice’ giant planets are discussed and related to formation theories of both smaller objects (terrestrial planets) and larger bodies (stars). The most detailed models of planetary formation are based upon observations of our own Solar System, of young stars and their environments, and of extrasolar planets. Stars form from the collapse, and sometimes fragmentation, of molecular cloud cores. Terrestrial planets are formed within disks around young stars via the accumulation of small dust grains into larger and larger bodies until the planetary orbits become well enough separated that the configuration is stable for the lifetime of the system. Uranus and Neptune almost certainly formed via a bottom-up (terrestrial planet-like) mechanism; such a mechanism is also the most likely origin scenario for Saturn and Jupiter.  相似文献   

9.
Models for the mechanisms of accretion of the terrestrial planets are re-examined using the experimental technique of high-precision isotope ratio mass spectrometry of tungsten (W). The decay of 182Hf to 182W (via 182Ta) provides a new kind of radiometric chronometer of planet formation processes. Hafnium and W, the parent and daughter trace elements, are highly refractory; however, Hf is lithophile and strongly partitioned into the silicate portion of a planet, whereas W is moderately siderophile and preferentially partitioned into a coexisting metallic phase. More than 90% of terrestrial W has gone into the Earth's core during its formation. The residual silicate portion, the Earth's primitive mantle, has a Hf/W ratio in the range 10−40, an order of magnitude higher than chondritic (∼1.3). Tungsten isotopic data for the Earth and the Moon suggest that we can date a major event of planet formation: The Moon formed about 50 Myrs after the start of the solar system, providing strong support for the Giant Impact Theory of lunar origin. Recent simulations of this event imply that the Earth was probably only half formed at the time. From this we can deduce the planetary accretion rate. Tungsten isotope data for Mars provide evidence of a much shorter accretion interval, perhaps as little as 10 Myrs, but the rates for the Earth over the same time interval could have been comparable. The large W isotopic heterogeneities on Mars could only have been produced within the first 30 Myrs of the solar system. Large-scale mixing, e.g. from convective overturn, as is thought to drive the Earth's plates, must be absent from Mars. Limitations of the method such as 1) cosmogenic 182Ta effects on lunar samples, 2) incomplete mixing of debris to cause W isotope heterogeneity on the Moon, and 3) initial 182Hf/180Hf heterogeneities of the early solar system are critically discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
It is well established that the prolonged and thorough mixing of numerous nucleosynthetic components that constitutes the matter in the solar nebula resulted in an essential isotopic homogeneity of the solar system material. This may or may not be true for the short-lived radionuclides which were injected into or formed within the solar nebula just prior to or during solar system formation. Distinguishing between their heterogeneous or homogeneous distribution is important because the short- lived radionuclides are now widely used for the relative chronology of various objects and processes in the early solar system and as constraints for models of nucleosynthesis. The recent studies of the 53Mn-53Cr isotope system (half life of 53Mn is 3.7 Ma) in various solar system objects have shown that the relative abundance of radiogenic 53Cr is consistent with essentially homogeneous distribution of 53Mn in the asteroid belt. Thus, the relative 53Mn-53Cr chronometer can be directly used for dating samples which originated in the asteroid belt. Importantly, however, all meteorite groups studied so far indicate a clear excess of 53Cr as compared to Earth and to a lunar sample, which exhibits also a terrestrial 53Cr/52Cr ratio. The results from the Martian (SNC) meteorites show that their 53Cr excesses are less than half of those found in the asteroid belt bodies. Thus, the characteristic 53Cr/52Cr ratio of Mars is intermediate between that of the Earth-Moon system and those of the other meteorites. If these 53Cr variations are viewed as a function of the heliocentric distance, the radial dependence of the relative abundances of radiogenic 53Cr is indicated. This observed gradient can be explained by either an early, volatility controlled, Mn/Cr fractionation within the nebula or by an initial radial heterogeneous distribution of 53Mn. Although model calculations of the Mn/Cr ratios in the bulk terrestrial planets seem to be inconsistent with the volatility driven scenario, the precision of these calculations is inadequate for eliminating this possibility. In contrast, recent studies of the 53Mn-53Cr system in the enstatite chondrites indicate that, while their bulk Mn/Cr ratios are essentially the same as in ordinary chondrites, the 53Cr excess in bulk enstatite chondrites is three times lower than that in the bulk ordinary chondrites. This difference cannot be explained by a Mn/Cr fractionation and, thus, strongly suggests that a radial heterogeneous distribution of 53Mn must have existed in at least the early inner solar system. Using the observed gradient and the 53Cr/52Cr ratio of the bulk enstatite chondrites, their parent body(ies) formed at ∼1.4 AU or somewhat closer to the Sun. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Vesta and Ceres are the largest members of the asteroid belt, surviving from the earliest phases of Solar System history. They formed at a time when the asteroid belt was much more massive than it is today and were witness to its dramatic evolution, where planetary embryos were formed and lost, where the collisional environment shifted from accretional to destructive, and where the current size distribution of asteroids was sculpted by mutual collisions and most of the asteroids originally present were lost by dynamical processes. Since these early times, the environment of the asteroid belt has become relatively quiescent, though over the long history of the Solar System the surfaces of Vesta and Ceres continue to record and be influenced by impacts, most notably the south polar cratering event on Vesta. As a consequence of such impacts, Vesta has contributed a significant family of asteroids to the main belt, which is the likely source of the HED meteorites on Earth. No similar contribution to the main belt (or meteorites) is evident for Ceres. Through studies of craters, the surfaces of these asteroids will offer an opportunity for Dawn to probe the modern population of small asteroids in a size regime not directly observable from Earth.  相似文献   

12.
Conclusions Passive observation of the naturally occurring γ-ray and X-ray from the planets is potentially an important technique for determining their gross chemical composition and on the basis of natural γ-radiation determining if the planetary surface is composed of differential material. If the planet is not covered by a thick atmosphere then it is possible to map the distribution of the most abundant elements on a scale of spatial resolution that is of the order of the altitude at which the observations are made. Initial observations carried out from lunar orbit have shown that the flux levels are approximately as expected and that the lunar surface is not characterized by any widespread distribution of acidic rocks in the region observed by the Luna 10 spacecraft.  相似文献   

13.
The Gravity Recovery and Interior Laboratory (GRAIL) is a spacecraft-to-spacecraft tracking mission that was developed to map the structure of the lunar interior by producing a detailed map of the gravity field. The resulting model of the interior will be used to address outstanding questions regarding the Moon’s thermal evolution, and will be applicable more generally to the evolution of all terrestrial planets. Each GRAIL orbiter contains a Lunar Gravity Ranging System instrument that conducts dual-one-way ranging measurements to measure precisely the relative motion between them, which in turn are used to develop the lunar gravity field map. Each orbiter also carries an Education/Public Outreach payload, Moon Knowledge Acquired by Middle-School Students (MoonKAM), in which middle school students target images of the Moon for subsequent classroom analysis. Subsequent to a successful launch on September 10, 2011, the twin GRAIL orbiters embarked on independent trajectories on a 3.5-month-long cruise to the Moon via the EL-1 Lagrange point. The spacecraft were inserted into polar orbits on December 31, 2011 and January 1, 2012. After a succession of 19 maneuvers the two orbiters settled into precision formation to begin science operations in March 1, 2012 with an average altitude of 55 km. The Primary Mission, which consisted of three 27.3-day mapping cycles, was successfully completed in June 2012. The extended mission will permit a second three-month mapping phase at an average altitude of 23 km. This paper provides an overview of the mission: science objectives and measurements, spacecraft and instruments, mission development and design, and data flow and data products.  相似文献   

14.
Much of what we know about the atmospheres of the planets and other bodies in the solar system comes from detection of photons over a wide wavelength range, from X-rays to radio waves. In this chapter, we present current information in various categories—measurements of the airglows of the terrestrial planets, the dayglows of the outer planets and satellites, aurora throughout the solar system, observations of cometary spectra, and the emission of X-rays from a variety of planetary bodies.  相似文献   

15.
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.  相似文献   

16.
Infrared astronomical measurements are calibrated against reference sources, usually primary standard stars that are, in turn, calibrated either by direct or indirect means. A direct calibration compares the star with a certified source, typically a blackbody. Indirect methods extrapolate a direct measurement of the flux at one wavelength to the flux at another. Historically, α Lyr (Vega) has been used as the primary standard as it is bright, easily accessible from the northern hemisphere, and is well calibrated in the visual. Until recently, the direct absolute infrared calibrations of α Lyr and those derived from the absolute solar flux scaled to the observed spectral energy distributions of solar type stars increasingly diverged with wavelength from those obtained using a model atmosphere to extrapolate the absolute visual flux of Vega into the infrared. The exception is the direct calibration by the 1996/97 Midcourse Space Experiment of the absolute fluxes for a number of the commonly used infrared standard stars, including Vega.In the mid-1980s, the Air Force Geophysics Laboratory began a program that led to the establishment of a network of stars with which to calibrate infrared space-based sensors. α Lyr and a CMa were adopted as the fundamental references and the absolute 1.2 to 35 µm infrared spectral energy distributions for the 616 secondary standard stars in the network were derived through spectral and photometric comparisons with the primary standards. The stars are also used for calibration at ground-based infrared observatories. For applications in which the network stars may not be bright enough, particularly at the longer infrared wavelengths, planets and the larger asteroids are used. Planets and asteroids move and rather sophisticated thermal modeling of the bodies is required to predict the disk-integrated brightness at a specific time with reasonable accuracy. The Infrared Space Observatory applied such a sophisticated ‘thermo-physical’ model to the largest asteroids to support calibration of the sensors to a claimed accuracy of within 5%. The AFRL program also created a spectral atlas of the brightest stars in the sky that, although they are variable, may be used for calibration if the large(r) attendant uncertainties are acceptable.  相似文献   

17.
Infrared astronomical measurements are calibrated against reference sources, usually primary standard stars that are, in turn, calibrated either by direct or indirect means. A direct calibration compares the star with a certified source, typically a blackbody. Indirect methods extrapolate a direct measurement of the flux at one wavelength to the flux at another. Historically, α Lyr (Vega) has been used as the primary standard as it is bright, easily accessible from the northern hemisphere, and is well calibrated in the visual. Until recently, the direct absolute infrared calibrations of α Lyr and those derived from the absolute solar flux scaled to the observed spectral energy distributions of solar type stars increasingly diverged with wavelength from those obtained using a model atmosphere to extrapolate the absolute visual flux of Vega into the infrared. The exception is the direct calibration by the 1996/97 Midcourse Space Experiment of the absolute fluxes for a number of the commonly used infrared standard stars, including Vega.In the mid-1980s, the Air Force Geophysics Laboratory began a program that led to the establishment of a network of stars with which to calibrate infrared space-based sensors. α Lyr and a CMa were adopted as the fundamental references and the absolute 1.2 to 35 µm infrared spectral energy distributions for the 616 secondary standard stars in the network were derived through spectral and photometric comparisons with the primary standards. The stars are also used for calibration at ground-based infrared observatories. For applications in which the network stars may not be bright enough, particularly at the longer infrared wavelengths, planets and the larger asteroids are used. Planets and asteroids move and rather sophisticated thermal modeling of the bodies is required to predict the disk-integrated brightness at a specific time with reasonable accuracy. The Infrared Space Observatory applied such a sophisticated ‘thermo-physical’ model to the largest asteroids to support calibration of the sensors to a claimed accuracy of within 5%. The AFRL program also created a spectral atlas of the brightest stars in the sky that, although they are variable, may be used for calibration if the large(r) attendant uncertainties are acceptable.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

18.
The processes of planet formation in our Solar System resulted in a final product of a small number of discreet planets and planetesimals characterized by clear compositional distinctions. A key advance on this subject was provided when nucleosynthetic isotopic variability was discovered between different meteorite groups and the terrestrial planets. This information has now been coupled with theoretical models of planetesimal growth and giant planet migration to better understand the nature of the materials accumulated into the terrestrial planets. First order conclusions include that carbonaceous chondrites appear to contribute a much smaller mass fraction to the terrestrial planets than previously suspected, that gas-driven giant planet migration could have pushed volatile-rich material into the inner Solar System, and that planetesimal formation was occurring on a sufficiently rapid time scale that global melting of asteroid-sized objects was instigated by radioactive decay of 26Al. The isotopic evidence highlights the important role of enstatite chondrites, or something with their mix of nucleosynthetic components, as feedstock for the terrestrial planets. A common degree of depletion of moderately volatile elements in the terrestrial planets points to a mechanism that can effectively separate volatile and refractory elements over a spatial scale the size of the whole inner Solar System. The large variability in iron to silicon ratios between both different meteorite groups and between the terrestrial planets suggests that mechanisms that can segregate iron metal from silicate should be given greater importance in future investigations. Such processes likely include both density separation of small grains in the nebula, but also preferential impact erosion of either the mantle or core from differentiated planets/planetesimals. The latter highlights the important role for giant impacts and collisional erosion during the late stages of planet formation.  相似文献   

19.
不同粒径分布模拟月壤承压特性试验研究   总被引:3,自引:0,他引:3  
邹猛  李建桥  何玲  李豪  张晓冬  周桂芬 《航空学报》2012,33(12):2338-2346
月壤的承压特性决定月面巡视探测器的行驶阻力和沉陷,是影响月面可通过性的主要特征之一。为了得出不同粒径分布的模拟月壤在巡视器地面载荷和月面载荷下的承压特性,通过压板试验获取了3种不同粒径分布模拟月壤的承压性能曲线与参数。分析表明:粒径分布对模拟月壤承压性能影响大,粒径粗且分布均匀的JLU-1模拟月壤承压能力最强,其次为JLU-3模拟月壤,而粒径细且分布窄的JLU-2模拟月壤承压能力最弱;3种模拟月壤的变形指数在其他模拟月壤的范围内,松软状态时接近月壤值,在小载荷作用且松软状态时变形指数小于1;3种模拟月壤的内聚模量在其他模拟月壤的范围内,但大于月壤值;松软状态时3种模拟月壤的摩擦模量在其他模拟月壤的范围内,中密和密实状态下均大于月壤值。研究结果对月面探测器行走机构的仿真和路径规划具有参考意义。  相似文献   

20.
The Lunar Crater Observation Sensing Satellite (LCROSS), an accompanying payload to the Lunar Reconnaissance Orbiter (LRO) mission (Vondrak et al. 2010), was launched with LRO on 18 June 2009. The principle goal of the LCROSS mission was to shed light on the nature of the materials contained within permanently shadowed lunar craters. These Permanently Shadowed Regions (PSRs) are of considerable interest due to the very low temperatures, <120?K, found within the shadowed regions (Paige et al. 2010a, 2010b) and the possibility of accumulated, cold-trapped volatiles contained therein. Two previous lunar missions, Clementine and Lunar Prospector, have made measurements that indicate the possibility of water ice associated with these PSRs. LCROSS used the spent LRO Earth-lunar transfer rocket stage, an Atlas V Centaur upper stage, as a kinetic impactor, impacting a PSR on 9 October 2009 and throwing ejecta up into sunlight where it was observed. This impactor was guided to its target by a Shepherding Spacecraft (SSC) which also contained a number of instruments that observed the lunar impact. A?campaign of terrestrial ground, Earth orbital and lunar orbital assets were also coordinated to observe the impact and subsequent crater and ejecta blanket. After observing the Centaur impact, the SSC became an impactor itself. The principal measurement goals of the LCROSS mission were to establish the form and concentration of the hydrogen-bearing material observed by Lunar Prospector, characterization of regolith within a PSR (including composition and physical properties), and the characterization of the perturbation to the lunar exosphere caused by the impact itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号