首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
温度、振动等环境载荷使得石英挠性加速度计参数产生漂移,直接影响了惯导系统的测量精度和性能,石英挠性加速度计参数变化趋势为非线性的,很难用常规的建模方法进行趋势预测。基于灰色理论适合进行小样本、贫信息不确定型系统建模以及近似支持向量机不需要求解二次规划就能求得非线性模型参数的优点,提出了基于灰色近似支持向量机进行石英挠性加速度计参数预测的方法。为了验证该方法的有效性,针对自然贮存的加速度计进行了固定周期的参数标定,结果表明灰色近似支持向量机具有很好的预测效果。  相似文献   

2.
基于最小二乘支持向量机的普通高校招生人数预测研究   总被引:2,自引:0,他引:2  
近年来普通高校的发展速度与规模,使社会大众兴起了对教育质量与总量的关注。普通高校招生数预测是制定教育政策的重要依据。针对中国文化教育的特征,在统计学习理论和结构风险最小化原理的基础上,建立了基于最小二乘支持向量机的时间序列预测模型。预测结果表明该模型具有较高的预测精度,为普通高校招生数预测提供了一条新的途径。  相似文献   

3.
将电机在有位置传感器运行条件下采样获得的磁链、电流和转角作为样本数据,基于相关向量机回归理论,通过对样本数据的训练与学习,构建开关磁阻电机转子位置的非线性相关向量机预测模型。为提高预测模型的拟合精度和泛化能力,训练过程中采用微粒群算法优化相关向量机的核函数参数。以1台三相12/8极样机为例,开展仿真研究,结果表明:该预测模型能够正确地检测出开关磁阻电机的转子位置,并且检测精度较高。  相似文献   

4.
相关向量机(RVM)是一种基于稀疏Bayesian学习理论的新型机器学习方法,具有概率式输出、稀疏性强、参数设置简单、核函数选择灵活等优点,克服了人工神经网络(ANN)和支持向量机(SVM)等典型机器学习方法的诸多固有缺陷。文章从模型选择与优化、模型计算效率和模型鲁棒性改进3个方面综述了RVM的理论研究进展;总结了RVM在故障诊断与预测中的应用研究现状;分析指出了当前研究中存在的问题,并讨论了基于RVM的故障诊断与预测技术的研究方向。  相似文献   

5.
减小温度变化对石英挠性加速度计输出的稳定性的影响,对提高惯性导航系统的精度有十分重要的意义。在建立石英挠性加速度计静态温度模型的基础上,采用AFSA对模型参数进行寻优,并给出了详细的建模步骤。结果分析表明,人工鱼群算法能够准确,快速的寻到模型参数。根据所建立的温度模型对加速度计输出进行补偿,加速度计的温度特性有了明显的改善。  相似文献   

6.
时间序列广泛存在于工业、经济、军事等各个领域,时间序列预测是数据分析处理的一个重要方面。目前提出的预测模型大多基于"原始时间序列是无噪的"这一假定,而实际应用中,对时间序列去噪处理的好坏将直接影响预测的准确率,针对这一事实,使用小波分析对原始时间序列去噪。利用小波变换对时间序列进行多尺度分解,对各尺度上的细节序列使用阀值法去噪;使用支持向量机对重构后的各组小波系数进行预测并将结果融合,得到预测结果。实验结果表明,用于时间序列预测,能及时反应序列的变化趋势并具有较高的预测精度。  相似文献   

7.
支持向量机时间序列预测模型的参数影响分析与自适应优化   总被引:10,自引:0,他引:10  
建立在统计学习理论和结构风险最小原则上的支持向量机在理论上保证了模型的最大泛化能力,因此与建立在经验风险最小原则上的神经网络模型相比,理论上更为完善.本文运用支持向量机建立时间序列预测模型,研究影响模型预测精度的相关参数,在分析参数对时间序列预测精度的影响基础上,提出用遗传算法建立支持向量机预测模型的参数自适应优化算法.最后,用太阳黑子数据和航空发动机油样光谱数据进行了预测分析.算例表明了本文算法的正确性.  相似文献   

8.
为提高航空飞行安全,精确预测多变地形的飞机颠簸极为重要。以风向稳定的多变地形为例,选取影响飞机颠簸的参数并对其重新组合来分析多变地形对飞机颠簸的影响。将栅格化的5种地形参数代入四种不同核函数的支持向量机模型对飞机颠簸进行预测,并与实际结果进行对比,结果表明多项式核函数针对此训练集可达到最优。使用多项式核函数的支持向量机进一步分析,发现使用地形起伏度、最高高度、风的水平速度与垂直速度四种参数的预测结果最佳,准确率高达94.44%,证明这四种地形相关参数与飞机颠簸相关性最高。  相似文献   

9.
为了能够全面准确地识别风力发电机的故障类别,考虑信号源振动和电流之间的相关性,提出了一种基于信息融合和改进相关向量机相结合的故障诊断方法。通过直驱风力发电机试验台实测数据,提取具有较高敏感度的特征参数作为诊断样本,建立基于振动和电流的改进相关向量机诊断模型进行初步故障诊断。利用信息融合建立多信号源故障诊断模型,获得最终风机故障诊断结果。试验表明,与基于单一信号的故障诊断方法相比,该方法具有更高的准确性,能很好地识别具有机电耦合特性的风力发电机故障类型。  相似文献   

10.
针对航空发动机性能参数预测过程中存在的不确定因素,提出一种基于组合优化相关向量机(CORVM)的概率预测方法.首先,通过正交小波变换将性能参数序列分解为具有不同特征尺度的随机分量和趋势分量,并分别建立各分量的相关向量机(RVM)回归预测模型.然后,以留一交叉验证误差最小作为优化目标,采用量子粒子群优化(QPSO)算法实现RVM核参数和嵌入维数的自适应优化选择.最后,组合各RVM回归预测模型得到最终预测均值及方差,进而得到预测值的概率分布.通过航空发动机排气温度变化量和滑油金属含量预测实例验证了方法的有效性,实验结果表明:该方法能够有效避免传统点预测方法可能导致的不可靠结果,并具有比单一模型更高的预测精度.  相似文献   

11.
建立了基于粒子群优化的轴流压气机机匣压力支持向量机预测模型.利用支持向量机的强大非线性映射能力,实现了对某型轴流压气机机匣压力时间序列的非线性预测,并运用粒子群优化算法对支持向量机的重要参数进行了优化,增强了预测模型对混沌动力学的联想和泛化推理能力,提高了预测的精度和稳定性.而针对发动机台架试验数据的预测结果证明了方法...  相似文献   

12.
研究利用最小二乘支持向量机预测混沌时间序列。混沌时间序列预测是典型的小样本学习问题,基于结构风险最小化原理的支持向量机方法,克服了神经网络易于陷入局部极值点等缺点,能够获得全局最优解。最小二乘支持向量机是一种在二次损失函数下采用等式约束求解问题的一种支持向量机,在保留支持向量机优点的同时使计算量大大减少。对典型混沌时间序列的预测结果表明,最小二乘支持向量机回归预测方法具有良好的泛化推广性能,预测精度高,适合于复杂非线性时问序列建模预测。  相似文献   

13.
 为了建立高精度的直升机仿真模型,把支持向量机(SVM)引入到直升机智能化建模领域,建立了直升机自转着陆过程的旋翼转速模型。根据凸二次优化问题在对偶间隙为零时取得最优解的性质,对序列最小优化算法的停机准则进行改进,并用于所建模型的训练。仿真结果表明:与神经网络模型比较,这种SVM模型具有结构简单、运算速度快和泛化能力强等优点。  相似文献   

14.
基于模糊支持向量机的飞机飞行动作识别   总被引:9,自引:0,他引:9  
杨俊  谢寿生 《航空学报》2005,26(6):738-742
传统的支持向量机由两类扩展到多类问题时,出现不可分区域。针对飞行动作识别提出解决这一现象的模糊支持向量机。采用模糊支持向量机对某型飞机飞行动作进行识别。实际飞参数据(6种飞行动作模式)的识别结果表明,模糊支持向量机较传统的多类支持向量分类器在飞机飞行动作识别率上有显著提高。  相似文献   

15.
基于支持向量机方法的发动机性能趋势预测   总被引:8,自引:3,他引:8       下载免费PDF全文
为了提高对航空发动机性能趋势预测的精度,提出利用支持向量机方法来预测表征发动机整体性能的参数一性能综合指数。建立了基于支持向量回归的一步及多步预测模型,利用该模型对性能正常衰退及性能异常发动机的综合指数分别进行预测,并与自回归(AR)模型的预测值进行比较。结果表明,基于支持向量机的预测模型比AR模型的预测精度更高,其四步预测精度由80.56%提高到88.51%。因此该模型尤其适合中、长期预测。  相似文献   

16.
为改善直接支持向量回归机(DSVMR)的稀疏性,提出一种适用于DSVMR的剪样训练算法.该算法利用矩阵变换实现剪样前后DSVMR的递推求解,提高了剪样训练过程中DSVMR多次训练的计算效率.混沌时间序列预测仿真表明,该算法有效改善了DSVMR的稀疏性,且计算效率较基于Cholesky分解的剪样训练算法有显著提高.飞机故障率预测实例表明,经剪样训练后的DSVMR的预测精度高于BP(back-propagation)神经网络预测方法与RBF(radial casis function)神经网络预测方法.  相似文献   

17.
基于优化最小二乘支持向量机的小样本预测研究   总被引:35,自引:0,他引:35  
统计学中的预测问题主要是通过对已知数据的分析,找到数据内在的相互依赖关系,从而获得对未知数据的预测能力。该文提出了最小二乘支持向量机参数优化方法———多层动态自适应优化算法,构建了基于最小二乘支持向量机的预测模型,并对Ti 26合金的性能预测进行了研究。结果表明:优化的最小二乘支持向量机具有优秀的小样本数据学习能力和预测能力。  相似文献   

18.
基于支持向量机回归的电力负荷预测研究   总被引:1,自引:0,他引:1  
张前进 《航空计算技术》2006,36(4):105-107,111
不同于传统的基于经验风险最小化的回归方法,支持向量机回归方法基于结构风险最小化准则.与神经网络相比,该方法在解决学习精度和推广性之间的矛盾方面有明显的优势.本文以城市电力负荷预测为应用背景,对比研究了基于统计学习理论的支持向量机回归方法和神经网络方法.预测结果显示支持向量机可能是一种非常有前景的预测工具,其预测精度明显好于神经网络.  相似文献   

19.
提出了一种基于支撑向量机的红外人脸识别方法,极大地提高了自动化水平和测温精度.试验表明了本方法的有效性.  相似文献   

20.
对常规熟练曲线建模方法和支持向量机模型用于某型武器装备的批量生产经济性分析进行研究,着重分析了应用支持向量机进行批量生产经济性分析的具体形式以及方法特点,并给出了应用实例,结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号