首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 80 毫秒
1.
等离子体片高速流在磁层活动中起着重要作用,其形成机制以及与背景等离子体的相互作用日益引起关注.本文利用搭载于Cluster四颗卫星上的磁场和等离子体观测仪器,对2001和2002两年发生在磁尾等离子体片中高速流事件期间的磁场变化进行了统计研究.结果表明,在高速流前端,伴随着等离子体整体速度的增加,绝大多数高速流前端磁场的B_z分量经常出现先短暂减小然后剧烈增大的现象,符合以往利用Geotail卫星观测数据获得的统计特性.然而个例研究发现B_z的下降与上升常常是不对称的,且B_z分量下降的程度并不是总能达到反向的程度,说明这种变化特征并不一定是存在磁结构的表现.我们认为更多时候这种磁场的变化特征是高速流挤压背景等离子体磁场造成的,是相互作用的结果.当偶极化锋面形成后,由类似间断面的磁场界面反射的热离子产生抗磁效应,可能对B_z下降形成部分贡献,而B_z增加则是高速流携带磁通量堆积的效果.  相似文献   

2.
行星际高密度结构的磁场位形   总被引:1,自引:0,他引:1  
本文统计分析了第20太阳周行星际高密度结构的磁场位形。结果说明当出现高密度结构时行星际磁场相对于黄道面的倾角约增大10°。这种增大并非流相互作用或电流片倾斜和折皱所引起的,而可能是非恒稳太阳风流所具有的磁场位形。当出现高速流或扇形边界时,由于高密度结构后平行于Parker螺旋线的分量增大,磁场在黄逋面内对螺旋线的偏离角减小。   相似文献   

3.
强磁场结构在行星际空间膨胀的数值模拟   总被引:1,自引:1,他引:0  
本文研究了强磁场结构在18—240Rs的行星际空间的膨胀效应。模拟结果表明, 强磁场结构的膨胀能够形成典型的磁云剖面结构;膨胀速度明显依赖于磁场强度的大小;强磁场结构运动的速度直接影响到它的动力学特性。   相似文献   

4.
在GSM坐标系下, 利用TC-1卫星和Cluster/C1卫星上4s分辨率的磁场和热离子探测数据, 对中心等离子体片内的地向对流型高速流进行了统计研究(-19 Re < x< -9 Re, |y| < 10 Re, |z|< 5 Re). 统计结果表明, 地向对流型高速流会在15 Re以内出现``刹车', 在11.5 Re附近时出现``缺失'. 进一步对其速度特征进行统计分析. 结果显示, 在中心等离子体片内的高速流, 其运动方向主要为地向, 晨昏和南北方向的运动明显较弱; 在对流型高速流的地向输运过程中, 其峰值速度没有明显的下降; 在近地13 Re以内, 等离子体片内的地向对流型高速流具有较强的垂直磁力线运动速度. 这意味着对流型高速流在近地15 Re以内的“刹车”不是由高速流晨昏或南北方向的偏转造成的. 高速流在11.5 Re附近时出现的``缺失'可能与在15 Re以内出现``刹车'密切相关. TC-1卫星和Cluster卫星的观测为了解中磁尾重联高速流地向输运过程及亚暴膨胀相触发提供了重要的观测依据.   相似文献   

5.
2004年10月12日,在01:30—04:30 UT期间,位于向阳侧磁层顶附近的Geotail卫星探测到行星际磁场为持续南向.此太阳风条件驱动了一个小磁暴,Sym-H指数在04:12 UT达到最小值-33 nT.在磁暴主相期间,AE指数维持在较高的水平,其最大值达400 nT.02:00—03:00 UT期间,TC-1卫星在近地磁尾(-10.6,3.2,-0.1)R_e处观测到明显的亚暴膨胀相特征和磁场偶极化过程.在偶极化前1 min,有较强的(v_x<-100 km/s)持续时间超过3 min的尾向流发生.分析发现该尾向流具有低温、高密度和沿磁场流动的特点,这说明尾向流具有来源于电离层风的特征.尾向流期间,TC-1观测的磁场分量B_x和总的磁场强度增加,磁倾角减小,磁场结构变成非偶极型,说明尾向流对磁场结构有一定的影响,文中尝试给出了相应的物理解释.观测表明,该事例中的近地磁尾尾向流可能对磁场偶极化过程的发生有重要意义.  相似文献   

6.
为了更好地了解细长旋成体背部绕流非对称涡的形成机理,研究了头部带扰动块对细长旋成体背部绕流结构的影响,通过雷诺平均Navier-Stokes(RANS)法对细长旋成体模型在攻角5°~60°范围内进行仿真。在攻角分别为20°和30°时对是否添加扰动块模型进行对比,分析了不同截面绕流沿轴向位置的发展,提出了验证拓扑结构的一种方法,找到了各流态下奇点的位置,通过涡核位置对模型背部绕流的发展进行了分析。研究表明:添加已知规则扰动块可以加快各绕流结构间的转换速度,使非对称涡产生的攻角减小。   相似文献   

7.
2004年10月12日, 在01:30---04:30 UT期间, 位于向阳侧磁层顶附近的Geotail卫星探测到行星际磁场为持续南向. 此太阳风条件驱动了一个小磁暴, Sym-H指数在04:12 UT达到最小值-33nT. 在磁暴主相期间, AE指数维持在较高的水平, 其最大值达400nT. 02:00---03:00 UT期间, TC-1卫星在近地磁尾(-10.6, 3.2, -0.1)Re处观测到明显的亚暴膨胀相特征和磁场偶极化过程. 在偶极化前1min, 有较强的(vx<-100 km/s)持续时间超过3min的尾向流发生. 分析发现该尾向流具有低温、高密度和沿磁场流动的特点, 这说明尾向流具有来源于电离层风的特征. 尾向流期间, TC-1观测的磁场分量Bx和总的磁场强度增加, 磁倾角减小, 磁场结构变成非偶极型, 说明尾向流对磁场结构有一定的影响, 文中尝试给出了相应的物理解释. 观测表明, 该事例中的近地磁尾尾向流可能对磁场偶极化过程的发生有重要意义.   相似文献   

8.
根据Ylysses观测,比较完整地计算了高纬行星际空间太阳风能流分布.计算表明,行星际空间的高速流能流密度约为2.1×10-3J·m-2·s-1(日心距离r=1AU),主要来自于太阳风离子所携带的动能流(占58%)和克服太阳引力的势能流(占39%).要驱动高速流,需要在日冕底部高速流源区(日心距离r=1Rs)向外输出到太阳风的能流密度为7.1×102J·m-2·s-1·分析表明,由日冕底部向外可能输出两种形式的能流,其中一种具有较短的耗散长度,被耗散在很短的空间区域(~1—2Rs),使日冕温度迅速提高。另一种储藏在连续向外传播的太阳风中,不断耗散用以加速太阳风(>2Rs).  相似文献   

9.
对1978年8月27至28日期间观测到的磁云与尾随高速流的相互作用进行数值模拟,基本拟合了1AU处的观测剖面。模拟结果表明,磁云-高速流系统将导致前向快,慢激波和后向快激波的形成。  相似文献   

10.
本文利用行星际观测数据,分析了1978年8、9月间同一起源的共转高速流两次与磁云发生的相互作用.8月27日,强磁云为共转高速流所追赶,磁云前半部为磁云本体,具有强磁云的基本特征,但后半部则为高速流追赶磁云的相互作用区,流速图象具有明显的双台阶特征.9月25日另一异常强磁云追赶再次重现的共转高速流,磁云前部为相互作用区,后部为磁云本体,但结构特征较简单磁云复杂;磁云前部流速峰值超过900km/s,而在磁云本体.Alfvén波速峰值在600km/s以上,非常接近局部太阳风速.此两事例进一步说明了Alfvén波速增强对磁云加速的重要作用.此外,还就磁云引起的磁暴和宇宙线下降的特性进行了讨论.  相似文献   

11.
本文讨论了1980年12月19日和3月19日两次无大型共转流相联系的行星际简单强磁云事件的磁流体动力学结构特征。此两磁云均以高温、高密度的湍流结构为先导,接着是低温、低密度,磁场很强且倾角单调旋转的磁云本体,后随另一密度稍高的结构。磁云本体内Alfvén波速及磁压对动能密度和热压的比值异常地增高,有利于磁云后的扰动迅速穿越磁云向前传播并向前边界集结。磁云边界上的巨大磁压梯度力及MHD波动在高密度结构内的耗散有可能对磁云前的太阳风进行加速和加热,形成双锯齿流速图象。简单磁云的结构很象典型的日冕质量抛射事件。此外,还简要地分析了磁云引起的地磁暴和宇宙线下降。   相似文献   

12.
The propagation of a strong cylindrical shock wave in an ideal gas with azimuthal magnetic field, and with or without axisymmetric rotational effects, is investigated. The shock wave is driven out by a piston moving with time according to power law. The ambient medium is assumed to have radial, axial and azimuthal component of fluid velocities. The fluid velocities, the initial density and the initial magnetic field of the ambient medium are assumed to be varying and obey power laws. Solutions are obtained, when the flow between the shock and the piston is isothermal. The gas is assumed to have infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The shock wave moves with variable velocity and the total energy of the wave is non-constant. The effects of variation of the initial density and the Alfven-Mach number on the flow-field are obtained. A comparison is also made between rotating and non-rotating cases.  相似文献   

13.
The interplanetary manifestations of coronal mass ejections, ICMEs, have many signatures in the solar wind but none of these signatures in the velocity, density, temperature, magnetic field, plasma composition or energetic particles uniquely and unambiguously identifies the occurrence of an ICME. Different investigators identify different events when confronted with the same data. Herein, we present a single physical parameter that combines information from multiple plasma components and that holds the promise of defining a beginning and an end of the region of influence ICME and an indication of the location of the encounter with the ICME relative to its central meridian. This parameter is the total plasma pressure perpendicular to the magnetic field, consisting of the sum of the magnetic pressure and plasma kinetic or thermal pressure. It provides a vehicle for classifying the nature of the ICME encounter and, in many cases, provides an unambiguous start and stop time of the event. However, it does not provide a start and stop time for any embedded flux rope. This identification depends on examination of the magnetic field.  相似文献   

14.
日冕物质抛射中非对称高密度云和非线性波的形成和演化   总被引:2,自引:1,他引:2  
应用函数拟合及数字滤波等方法,对SMM飞船观测的1980年8月18日日冕物质抛射事件进行了定量分析。论证了不对称高密度云的形成与爆发日珥顶端偏离冕流对称轴有关,讨论了此不对称结构的演化及其对事件发展的影响,作出了暗腔是强磁场膨胀体的重要论断。从图象亮度的高度分布剖面中,分析出日冕非线性波在演化过程中前沿变陡的观测证据,推算了演化成激波的时间和高度,并论证了两者都是强磁场膨胀体所驱动的,而不是瞬时能量爆发所引起的。   相似文献   

15.
利用Helios2飞船的数据,对太阳风速度分布中质子束流部分与整个质子的密度之比随日心距离的变化做了分析.为了排除碰撞因素的影响,有针对性地分析了太阳风高速流(600相似文献   

16.
有磁场时电子在航天器光电子鞘层中的漂移运动   总被引:2,自引:1,他引:1  
采用二级漂移近似理论,研究了在航天器光电子鞘层中与电流收集有关的电子在磁场中的运动轨道和收集电子有关的磁瓶结构,结果表明当磁场越强,航天器表面电势越弱,磁瓶在无穷远处横截面积就越小。在光电子鞘层中,势垒对电流收集影响较大,磁瓶的横截面积在略远于垫垒处有极大值,磁瓶在无穷远处的横截面积并非随着势垒距航天器距离的远近而单调变化。  相似文献   

17.
We present numerical results showing the effect of neutral hydrogen atoms on the solar wind (SW) interaction with the local interstellar medium (LISM), where the interstellar magnetic field (ISMF) is coupled to the interplanetary magnetic field (IMF) at the surface of the heliopause. The IMF on the inner boundary surrounding the Sun is specified in the form of a Parker spiral and self-consistently develops in accordance with the SW motion inside the heliopause. The model of the SW–LISM interaction involves both plasma and neutral components which are treated as fluids. The configuration is chosen where the ISMF is orthogonal to the LISM velocity and tilted 60° to the ecliptic plane. This orientation of the magnetic field is a possible explanation of the 2–3 kHz emission data which is believed to originate ahead of the heliopause. It is shown that the topology of the heliospheric current sheet is substantially affected by the ISMF. The interaction pattern dependence on the neutral hydrogen density is analyzed.  相似文献   

18.
行星际激波对地球磁层的压缩效应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2004 年11月9日WIND飞船探测到一个典型的行星际激波. 激波前行星际磁场为持续约50 min的弱南向磁场, 越过激波面, 磁场发生北向偏转且太阳风动压脉冲增强. 在此强动压脉冲增强结构作用下, 磁层被压缩至一个很小的区域. 激波作用于磁层时引起地球同步轨道 各区域高能粒子通量的响应, 但是不同磁地方时的高能粒子通量的响应不同, 表现出双模式扰动, 即在晨昏两侧各能段的电子和质子通量显著增强, 在子夜侧发生类似于亚暴的无色散粒子注入现象. 扰动从向阳面传输到背阳面, 向阳面粒子通量最先增强, 随后背阳面靠近晨昏两侧, 粒子通量开始增强, 最后子夜侧粒子通量表现出无色散高能粒子注入的特点. 另外, 在靠近正午侧, 质子通量先于电子通量发生响应, 在子夜侧电子通量则先于质子通量发生响应. 利用位于向阳面正午两侧的GOES-10 和 GOES-12卫星观测数据发现, 激波作用于磁层时靠近晨侧的磁场变化表现出简单压缩效应, 而靠近昏侧的磁场变化则显然不同, Bx分量减弱, Bz分量几乎减为零, 而By分量则显著增强. 此外, 位于近地磁尾低纬尾瓣区的TC-1卫星观测到激波触发的尾瓣SI现象.   相似文献   

19.
CME在行星际空间传播时, 会导致强磁场、高密度等离子体云的出现. 回旋同步辐射是此类等离子体的一种主要的射电辐射机制, 且携带行星际磁场的重要信息. 本文重点探讨了光深τν ≤1时回旋同步辐射的发射、吸收及极化特性, 包括热电子、非热电子, 投掷角各向同性、投掷角各向异性等离子体云的回旋同步辐射过程的研究分析. 在此基础上, 推导了考虑折射指数情况下, 辐射强度、辐射亮温的表达式.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号