共查询到20条相似文献,搜索用时 62 毫秒
1.
传统图像拼接检测算法通过研究人员手动构造拼接特征,随着科技的进步以及图像处理技术的不断发展,手动构造特征的局限性逐渐体现出来,鲁棒性较弱,位置不易确定等。为了解决这些问题,构建了一种卷积神经网络(CNN),将卷积核前置并固定,自主学习相关特征从而检测拼接篡改的图像区域。经过一系列研究,发现拼接篡改图像的拼接篡改区域特征可以被CNN模型学习。在CNN模型之前,卷积核使用高通滤波器,激活函数采用指数线性单元(ELU),使得CNN模型具有识别拼接篡改图像边缘痕迹等特征的能力。检测结果表明:在IEEE IFS-TC图像拼接取证竞赛训练集上对拼接篡改图像拼接篡改区域定位的准确率为84.3%,对拼接篡改区域判定的真负类率为96.18%。 相似文献
2.
无人机数据链通信受到各种自然与人为的干扰,信噪比(SNR)是信道状态和通信质量的有效评估指标。为解决传统估计算法信噪比估计精度不足的问题,提出了一种卷积神经网络(CNN)与长短时记忆(LSTM)网络结合的估计模型。利用仿真与实测相结合的方式,构建了一个包含不同信噪比、调制方式、衰落信道等信息的无人机通信信号数据集;在网络训练阶段,将样本序列进行分割,对分割后的每一部分序列使用CNN-LSTM网络提取深度特征,多次训练并保存模型参数;在测试阶段,利用构建好的测试集完成对算法的验证与测试,得到信噪比估计值。实验表明,相比于传统信噪比估计算法与单一网络结构的深度学习算法,所提算法的均方误差最低,实现了对信噪比的高精度估计。 相似文献
3.
基于卷积神经网络的遥感图像舰船目标检测 总被引:4,自引:1,他引:4
针对遥感图像背景复杂、受环境因素影响大的问题,提出一种将卷积神经网络(CNN)与支持向量机(SVM)相结合的舰船目标检测方法,利用卷积神经网络可自主提取图像特征并进行学习的优点,避免了复杂的特征选择和提取过程,在复杂海况背景图像的处理中体现出较优的性能;同时,由于军舰样本获取难度大,应用迁移学习的概念,利用大量民船样本辅助军舰目标的检测,取得较好的效果。通过参数调整与实验验证,此方法在自行建立的测试集上检测率达到90.59%,对光照、环境等外界因素具有一定程度的鲁棒性。 相似文献
4.
融合邻域色差的PSPNet对遥感影像的分割 总被引:1,自引:0,他引:1
传统的遥感影像语义分割利用影像的光谱特性,将具有相似值的像素进行归类,但无法区分具有不同光谱的同一类对象.针对这一问题,提出将邻域的色差信息和原始图像一起输入PSPNet网络中的方法.先将RGB变换到LAB空间,然后采用CIELAB公式计算出每一个像素与周围8个邻域像素的色差值,取平均值作为该像素的邻域色差值.在WHU... 相似文献
5.
视频缩略图作为视频内容最直观的表现形式,在视频共享网站中发挥很重要的作用,是吸引用户是否会点击观看该视频的关键要素之一。一句与视频内容相关的描述性语句,再搭配一幅与语句内容相关的视频缩略图,往往对用户更有吸引力,因此提出一种深度视觉语义嵌入模型来构建完整的视频缩略图推荐框架。该模型首先使用卷积神经网络(CNN)来提取视频关键帧的视觉特征,并使用循环神经网络(RNN)来提取描述语句的语义特征,再将视觉特征与语义特征嵌入到维度相同的视觉语义潜在空间;然后通过比较视觉特征与语义特征之间的相关性来推荐与特定的描述语句内容密切相关的视频关键帧作为视频缩略图推荐结果。在不同类型的网络视频数据上的实验表明,所提方法能够有效地从网络视频中推荐出与给定描述性语句内容较相关的视频缩略图序列,提升视频的用户浏览体验。 相似文献
6.
近年来,卷积神经网络(CNN)已被计算机视觉任务广泛采用。由于FPGA的高性能、能效和可重新配置性,已被认为是最有前途的CNN硬件加速器,但是受FPGA计算能力、存储资源的限制,基于传统Winograd算法计算三维卷积的FPGA解决方案性能还有提升的空间。首先,研究了适用于三维运算的Winograd算法一维展开过程;然后,通过增加一次性输入特征图和卷积块的维度大小、低比特量化权重和输入数据等方法改善CNN在FPGA上的运行性能。优化思路包括使用移位代替部分除法的方法、分tile方案、二维到三维扩展及低比特量化等4个部分。相对传统的二维Winograd算法,优化算法每个卷积层的时钟周期数减少了7倍左右,相较传统滑窗卷积算法平均每个卷积层减少7倍左右。通过研究,证明了基于一维展开的3D-Winograd算法可以大大减少运算复杂度,并改善在FPGA运行CNN的性能。 相似文献
7.
针对基于深度学习的语义分割模型在解析遥感图像时,小尺寸目标和目标边界存在分割不准确的问题,提出一种U型网络模型SGE-Unet。该模型通过优化网络结构加强模型的特征提取能力;融合空间组增强注意力,提升模型对上下文语义信息的解析能力;采用中值频率平衡交叉熵损失函数抑制类别分布不均衡的影响。在2个数据集上进行实验,SGE-Unet的整体准确率、平均交并比、■分数和Kappa系数均高于主流模型,Vaihingen数据集中小尺寸目标车的交并比和F1分数分别为0.719和0.901,比次优模型提升了16%和11%,实验结果表明所提模型能更精准地分割小尺寸目标及目标边界。 相似文献
8.
物流、保险和中介服务等行业需要频繁地拨打电话,而人工拨打电话效率较低,高效的电话号码识别技术具有重要的应用价值。传统的印刷体数字识别方法存在人工设计特征过程复杂、识别字体单一等不足,难以满足实际应用需求。本文提出了一种基于深度学习的交互式的电话号码识别方法,通过鼠标双击图像中的电话号码,自动截取出包含此号码的目标区域,并进行灰度化、二值化、目标区域定位、字符分割和图片补白等预处理操作,在此基础上利用改进的LeNet-5卷积神经网络(CNN)自动学习图像特征,支持多种字体、字形和字号的印刷体数字识别,并利用交互式识别和内存池等方法提高识别速度。实验结果表明,单一字符的识别率为99.86%,整个号码的识别率为99.50%,整个号码平均识别时间为91 ms。本文方法识别精度高、识别速度快,具有较为广泛的应用前景。 相似文献
9.
在遥感图像目标检测领域内,旋转物体的检测存在挑战,卷积神经网络在提取信息时会受制于固定的空间结构,采样点无法聚焦于目标;遥感图像尺度变化大,不同物体需要具有不同尺度感受野的特征映射,具有单一尺度感受野的特征映射无法包含所有有效信息。基于此,提出了可变形对齐卷积,根据候选边框调节采样点,并根据特征映射学习采样点的细微偏移,使采样点聚焦于目标,从而实现动态特征选择;同时提出了基于可变形对齐卷积的感受野自适应模块,对具有不同尺度感受野的特征映射进行融合,自适应地调整神经元的感受野。在公开数据集上的大量实验验证了所提算法可以提高遥感图像目标检测的精度。 相似文献
10.
基于EfficientDet的无预训练SAR图像船舶检测器 总被引:1,自引:0,他引:1
针对多尺度、多场景的合成孔径雷达(SAR)图像船舶检测问题,提出了一种基于EfficientDet的无预训练目标检测器。现有的基于卷积神经网络的SAR图像船舶检测器并没有表现出其应有的出色性能。重要原因之一是依赖分类任务的预训练模型,没有有效的方法来解决SAR图像与自然场景图像之间存在的差异性;另一个重要原因是没有充分利用卷积神经网络各层的信息,特征融合能力不够强,难以处理包括海上和近海在内的多场景船舶检测,尤其是无法排除近海复杂背景的干扰。SED就这2个方面改进方法,在公开SAR船舶检测数据集上进行实验,检测精度指标平均准确率(AP)达到94.2%,与经典的深度学习检测器对比,超过最优的RetineNet模型1.3%,在模型大小、算力消耗和检测速度之间达到平衡,验证了所提模型在多场景条件下多尺度SAR图像船舶检测具有优异的性能。 相似文献
11.
现有图像配准算法中,借助图像采集设备参数的方法存在硬件内参难以获得或精度不够的问题,采用匹配图像特征计算图像单应性的方法存在对场景深度信息利用不全的问题。针对这一现象,提出了结合可见光图像与其深度信息来生成更具有真实性的配准图像对数据,用以训练得到一个可以进行像素级别图像配准的深度神经网络PIR-Net。建立了一个大规模、多视角、超仿真的图像配准数据集:多视角配准(MVR)数据集,该数据集包含7 240对含有深度信息的待配准图像及其像素级别的坐标对准真值;基于编码器-解码器的深度神经网络结构,训练得到一个能以全分辨率形式对2幅输入图像之间的坐标变化矩阵进行重建的PIR-Net。通过实验验证了PIR-Net能够在未知相机内参的情况下实现不同视角的可见光图像配准,并比传统算法具有更高的配准精度。在MVR数据集上,PIR-Net的配准误差仅为通用的特征匹配对准算法(SIFT+RANSAC)的18%,同时减少了30%的时间消耗。 相似文献
12.
随着深度学习在众多领域的成功应用与快速发展,将深度学习与传统的结构分析相融合已经成为了新的研究方向。在求解有限元单元刚度矩阵的具体问题上,研究了卷积神经网络在结构分析上的应用。以四边形平面应力单元为例,基于卷积神经网络,提出了一个求解有限元总体刚度矩阵的神经网络模型;同时分析了网络的学习效果与网络卷积核数目、训练样本数目之间的关系。计算实例表明,在一定范围内,网络的学习能力随着卷积核数目、训练样本数目的增加而不断提升。在现实应用时,可以根据具体的精度要求而设定相应的卷积神经网络。卷积神经网络训练完成后,单元刚度矩阵的计算具有实时性,且精度满足工程要求。 相似文献
13.
为降低弹道目标整体误识别代价,提出了基于代价敏感剪枝(CSP)一维卷积神经网络(1D-CNN)的弹道目标高分辨距离像识别方法。首先,基于彩票假设提出了同时以降低模型复杂度和误识别代价为目标的统一框架;然后,在此基础上,提出了基于人工蜂群算法的网络结构无梯度优化方法,以网络结构搜索的方式自动地寻找1D-CNN的代价敏感子网络,即代价敏感剪枝;最后,为了使代价敏感子网络在微调过程中仍以最小化误识别代价为目标,提出了一种代价敏感交叉熵(CSCE)损失函数对训练进行优化,使代价敏感子网络侧重对误识别代价较高的类别正确分类来进一步降低整体误识别代价。实验结果表明:结合CSP和CSCE损失函数的1D-CNN能在保持较高的识别正确率的前提下,相比传统的1D-CNN具有更低的整体误识别代价,且降低了50%以上的计算复杂度。 相似文献
14.
基于条件生成对抗网络的HDR图像生成方法 总被引:1,自引:0,他引:1
高动态范围(HDR)图像相比低动态范围(LDR)图像有更宽的色域和更高的亮度范围,更符合人眼视觉效果,但由于目前的图像采集设备大都是LDR设备,导致HDR图像资源匮乏,解决该问题的一种有效途径是通过逆色调映射将LDR图像映射为HDR图像。提出了一种基于条件生成对抗网络(CGAN)的逆色调映射算法,以重建HDR图像。为此,设计了基于多分支的生成对抗网络与基于鉴别块的鉴别网络,并利用CGAN的数据生成能力和特征提取能力,将单张LDR图像从BT.709色域映射到对应的BT.2020色域。实验结果表明:与现有方法相比,所提出的网络能够获得更高的客观与主观质量,特别是针对低色域中的模糊区域,所提方法能够重建出更清晰的纹理与细节。 相似文献
15.
地磁匹配导航技术是一种重要的辅助导航制导方法,地磁基准图的构建精度对地磁匹配制导的精准度起着决定性作用。针对现有地磁基准图构建精度难以满足实际地磁匹配导航需求的问题,提出了一种基于卷积神经网络的地磁基准图构建方法。首先,利用卷积层提取低分辨率基准图中的特征图像块;然后,利用基于学习的阈值收缩算法(LISTA)实现图像块的稀疏表示;最后,利用三通道的地磁信息得到重建后的高分辨率基准图。实验结果表明:所提方法对地磁基准图具有更高的构建精度,同时对噪声有更好的鲁棒性,各种客观评价指标均高于现有的超分辨率重建方法。 相似文献
随着手势动作识别技术在人机交互、生活娱乐及医疗服务等应用领域的逐步深入,其对非接触、微光条件下的稳健测量与识别能力提出更高要求。针对该问题,研究了一种基于线性调频连续波(LFMCW)雷达距离-多普勒(RD)信息和卷积神经网络(CNN)的典型手势动作识别方法。首先,对于LFMCW雷达回波,通过去斜、快时间域快速傅里叶变换和相干积累,获取手势目标的二维RD像数据;其次,以RD像幅度矩阵作为CNN输入样本,利用2层卷积与池化处理构建特征空间,从而通过全连接与softmax分类器实现对手势动作的有效识别;最后,在此基础上,采用24 GHz工业雷达传感器设计手势测量实验系统,形成关于4种典型手势动作的LFMCW雷达回波数据库。实验结果表明,将24 GHz LFMCW雷达回波RD处理与CNN结合能够实现对典型手势动作的有效识别。 相似文献