首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.  相似文献   

2.
Interplanetary origin of geomagnetic storms   总被引:8,自引:0,他引:8  
Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms, involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic field strengths, thus both contributing to the development of intense storms since those two parameters are important factors in genering the solar wind-magnetosphere coupling via the reconnection process. During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density, low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfvén waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity, and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs). Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary manifestations of subsequent CMEs, can lead to extremely intense storms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The interaction of a stellar magnetosphere with a thin accretion disk is considered. Specifically, I consider a model in which (1) the accretion disk is magnetically linked to the star over a large range of radii and (2) the magnetic diffusivity of the disk is sufficiently small that there is little slippage of field lines within the disk on the rotation time scale. In this case the magnetic energy built up as a result of differential rotation between the star and the disk is released in quasi-periodic reconnection events occuring in the magnetosphere (Aly and Kuijpers 1990). The radial transport of magnetic flux in such an accretion disk is considered. It is show that the magnetic flux distribution is stationary on the accretion time scale, provided the time average of the radial component of the field just above the disk vanishes. A simple model of the time-dependent structure of the magnetosphere is presented. It is shown that energy release in the magnetosphere must take place for (differential) rotation angles less than about 3 radians. The magnetic flux distribution in the disk depends on the precise value of the rotation angle.  相似文献   

5.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

6.
Magnetic reconnection is a universal phenomenon where energy is efficiently converted from the magnetic field to charged particles as a result of global magnetic topology changes during which earlier separated plasma regions become magnetically connected. While the reconnection affects large volumes in space most of the topology changes and of the energization occur within small localized regions. Regions of special importance are the X-region and the separatrix region. The understanding of the microphysics of these regions is crucial for the overall understanding of the reconnection. The Earth magnetosphere is the best environment where the details of these regions can be studied in situ. We summarize their main properties and discuss recent spacecraft observations.  相似文献   

7.
A Twin-CME Scenario for Ground Level Enhancement Events   总被引:2,自引:0,他引:2  
Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ~GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed.  相似文献   

8.
We present an overview of how the principal physical properties of magnetic flux which emerges from the toroidal fields in the tachocline through the turbulent convection zone to the solar surface are linked to solar activity events, emphasizing the effects of magnetic field evolution and interaction with other magnetic structures on the latter. We compare the results of different approaches using various magnetic observables to evaluate the probability of flare and coronal mass ejection (CME) activity and forecast eruptive activity on the short term (i.e. days). Then, after a brief overview of the observed properties of CMEs and their theoretical models, we discuss the ejecta properties and describe some typical magnetic and composition characteristics of magnetic clouds (MCs) and interplanetary CMEs (ICMEs). We review some individual examples to clarify the link between eruptions from the Sun and the properties of the resulting ejecta. The importance of a synthetic approach to solar and interplanetary magnetic fields and activity is emphasized.  相似文献   

9.
This chapter provides an overview of current efforts in the theory and modeling of CMEs. Five key areas are discussed: (1) CME initiation; (2) CME evolution and propagation; (3) the structure of interplanetary CMEs derived from flux rope modeling; (4) CME shock formation in the inner corona; and (5) particle acceleration and transport at CME driven shocks. In the section on CME initiation three contemporary models are highlighted. Two of these focus on how energy stored in the coronal magnetic field can be released violently to drive CMEs. The third model assumes that CMEs can be directly driven by currents from below the photosphere. CMEs evolve considerably as they expand from the magnetically dominated lower corona into the advectively dominated solar wind. The section on evolution and propagation presents two approaches to the problem. One is primarily analytical and focuses on the key physical processes involved. The other is primarily numerical and illustrates the complexity of possible interactions between the CME and the ambient medium. The section on flux rope fitting reviews the accuracy and reliability of various methods. The section on shock formation considers the effect of the rapid decrease in the magnetic field and plasma density with height. Finally, in the section on particle acceleration and transport, some recent developments in the theory of diffusive particle acceleration at CME shocks are discussed. These include efforts to combine self-consistently the process of particle acceleration in the vicinity of the shock with the subsequent escape and transport of particles to distant regions.  相似文献   

10.
Coronal Mass Ejections (CMEs) are plasma eruptions from the solar atmosphere involving previously closed field regions which are expelled into the interplanetary medium. Such regions, and the shocks which they may generate, have pronounced effects on cosmic ray densities both locally and at some distance away. These energetic particle effects can often be used to identify CMEs in the interplanetary medium, where they are usually called `ejecta'. When both the ejecta and shock effects are present the resulting cosmic ray event is called a `classical, two-step' Forbush decrease. This paper will summarize the characteristics of CMEs, their effects on particles and the present understanding of the mechanisms involved which cause the particle effects. The role of CMEs in long term modulation will also be discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
More than 1000 coronal mass ejections (CMEs) caused by different types of coronal transients have been analyzed up to now, based on the images from white light coronagraphs on board the OSO 7, Skylab, P78-1, and SMM spacecraft. In many cases, the CME images lead us to the impression of loop-like, more planar structures, similar to those of prominence structures often seen in H pictures. There is increasing evidence, though, for a three-dimensional bubble- or cloud-like structure of CMEs. In several cases, CMEs directed toward the earth (or away from it) were identified, as their outer fronts emerged on all sides of the coronagraph's occulting disk, thus suggesting a bubble-like appearance.There now appears to be unanimity about the crucial role that magnetic reconnection plays during the transient process. Recently, direct evidence was found for the pinch-off of CMEs, both from optical observations and from in situ measurements of isolated magnetic clouds' following transient shock waves. However, the detailed sequence of events during the generation of a CME is still unclear.Interplanetary shock waves associated with the CMEs are usually restricted in latitudinal extent to about the angular width of the optically observed CMEs. They may be somewhat less restricted in longitudinal extent. A nearly 1 1 association between CMEs and shock waves measured in situ from spacecraft (Helios 1 and 2, IMP 7 and 8, ISEE 3, Pioneer Venus) can be established, provided the CME and the spacecraft were in the same longitudinal and latitudinal range and the CME speed exceeds 400 km s–1. Around the past solar activity minimum all CMEs observed were centered at solar latitudes of less than 60°. Around solar maximum, a significant fraction of CMEs also originated from the polar regions. Thus, there is a good chance that the Ulysses spaceprobe will encounter many shocks caused by both low- and high-latitude CMEs, when it finally starts its journey over the Sun's poles.  相似文献   

12.
The results of Soviet and American spacecraft plasma and magnetic experiments show that a bow shock of Venus forms as a result of the direct interaction of the solar wind with the ionosphere. The shape and the position of the Venus bow shock, in general, correspond to a very weak dissipation of solar wind energy in the ionosphere.The measured magnetic field near the planet is strongly influenced by IMF; this fact is evidence of an induced magnetosphere. Some results of laboratory simulation and computer experiments are also in favor of such an induced magnetosphere.The interaction with the ionosphere manifests itself in the existence of a boundary region on the nightside where solar wind entry into the optical umbra of the planet is observed.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

13.
The heliospheric counterparts of coronal mass ejections (CMEs) at the Sun, interplanetary coronal mass ejections (ICMEs), can be identified in situ based on a number of magnetic field, plasma, compositional and energetic particle signatures as well as combinations thereof. We summarize these signatures and their implications for understanding the nature of these structures and the physical properties of coronal mass ejections. We conclude that our understanding of ICMEs is far from complete and formulate several challenges that, if addressed, would substantially improve our knowledge of the relationship between CMEs at the Sun and in the heliosphere.  相似文献   

14.
We present a brief introduction to the essential physics of coronal mass ejections as well as a review of theory and models of CME initiation, solar energetic particle (SEP) acceleration, and shock propagation. A brief review of the history of CME models demonstrates steady progress toward an understanding of CME initiation, but it is clear that the question of what initiates CMEs has still not been solved. For illustration, we focus on the flux cancellation model and the breakout model. We contrast the similarities and differences between these models, and we examine how their essential features compare with observations. We review the generation of shocks by CMEs. We also outline the theoretical ideas behind the origin of a gradual SEP event at the evolving CME-driven coronal/interplanetary shock and the origin of “impulsive” SEP events at flare sites of magnetic reconnection below CMEs. We argue that future developments in models require focused study of “campaign events” to best utilize the wealth of available CME and SEP observations.  相似文献   

15.
CMEs have been observed for over 30 years with a wide variety of instruments. It is now possible to derive detailed and quantitative information on CME morphology, velocity, acceleration and mass. Flares associated with CMEs are observed in X-rays, and several different radio signatures are also seen. Optical and UV spectra of CMEs both on the disk and at the limb provide velocities along the line of sight and diagnostics for temperature, density and composition. From the vast quantity of data we attempt to synthesize the current state of knowledge of the properties of CMEs, along with some specific observed characteristics that illuminate the physical processes occurring during CME eruption. These include the common three-part structures of CMEs, which is generally attributed to compressed material at the leading edge, a low-density magnetic bubble and dense prominence gas. Signatures of shock waves are seen, but the location of these shocks relative to the other structures and the occurrence rate at the heights where Solar Energetic Particles are produced remains controversial. The relationships among CMEs, Moreton waves, EIT waves, and EUV dimming are also cloudy. The close connection between CMEs and flares suggests that magnetic reconnection plays an important role in CME eruption and evolution. We discuss the evidence for reconnection in current sheets from white-light, X-ray, radio and UV observations. Finally, we summarize the requirements for future instrumentation that might answer the outstanding questions and the opportunities that new space-based and ground-based observatories will provide in the future.  相似文献   

16.
This review is concerned with the interplanetary ‘transmission line’ between the Sun and the Earth's magnetosphere. It starts with comments about coronal mass ejections (CMEs) that are associated with various forms of solar activities. It then continues with some of the current views about their continuation through the heliosphere to Earth and elsewhere. The evolution of energy, mass, and momentum transfer is of prime interest since the temporal/spatial/magnitude behavior of the interplanetary electric field and transient solar wind dynamic pressure is relevant to the magnetospheric response (the presence or absence of geomagnetic storms and substorms) at Earth. Energetec particle flux predictions are discussed in the context of solar activity (flares, prominence eruptions) at various positions on the solar disk relative to Earth's central meridian. A number of multi-dimensional magnetohydrodynamic (MHD) models, applied to the solar, near-Sun, and interplanetary portions of the ‘transmission line’, are discussed. These model simulations, necessary to advancing our understanding beyond the phenomenological or morphological stages, are directed to deceptively simple questions such as the following: can one-to-one associations be made between specific forms of solar activity and magnetosphere response?  相似文献   

17.
Yihua Yan 《Space Science Reviews》2005,121(1-4):213-221
The coronal magnetic field configuration is important for understanding the energy storage and release processes that account for flares and/or CMEs. Here we present a model which is based on the work for potential magnetic field problems that only applies the condition at infinity with the boundary condition on the solar surface specified. We also discuss some recent progress on general force-free field models. For some event analyses, we have employed MDI/SOHO longitudinal magnetogram insected into the synoptic magnetogram to obtain whole boundary condition over the solar surface. Globally, the extrapolated global magnetic field structures effectively demonstrate the case for the disk signature of the radio CMEs and the evolution of the radio sources during the CME/flare processes.  相似文献   

18.
This paper reviews recent developments in the understanding of the solar-wind magnetosphere interaction process in which the interplanetary magnetic field has been found to play a key role. Extensive correlative studies between the interplanetary magnetic field and the magnetospheric parameters have in the past few years yielded detailed information on the nature of the interaction process and have made possible to follow the sequence of events that are produced inside the magnetosphere in consequence of the solar-wind energy transfer. We summarize the observed effects of the interplanetary magnetic field, its north-south and east-west components in particular, found in various domains of the magnetosphere — dayside magnetopause, polar cap, magnetotail, auroral zone —, and present an overall picture of the solar-wind magnetosphere interaction process. Dungey's reconnected magnetosphere model is used as a frame of reference and the basic compatibility of the observations with this model is emphasized. In order to avoid overlap with other review articles in the series discussion on the energy conversion process inside the magnetosphere leading to the substorm phenomenon is kept to the minimal.  相似文献   

19.
This paper is devoted to the problem of particle acceleration in the closest to the Sun Hermean magnetosphere. We discuss few available observations of energetic particles in Mercury environment made by Mariner-10 in 1974–1975 during Mercury flyby’s and by Helios in 1979 upstream of the Hermean bow shock. Typically ions are non-adiabatic in a very dynamic and compact Mercury magnetosphere, so one may expect that particle acceleration will be very effective. However, it works perfectly for electrons, but for ions the scale of magnetosphere is so small that it allows their acceleration only up to 100 keV. We present comparative analysis of the efficiency of various acceleration mechanisms (inductive acceleration, acceleration by the centrifugal impulse force, stochastic acceleration in a turbulent magnetic fields, wave–particle interactions and bow shock energization) in the magnetospheres of the Earth and Mercury. Finally we discuss several points which need to be addressed in a future Hermean missions.  相似文献   

20.
This chapter reviews how our knowledge of CMEs and CME-associated phenomena has been improved, since the launch of the SOHO mission, thanks to multi-wavelength analysis. The combination of data obtained from space-based experiments and ground based instruments allows us to follow the space-time development of an event from the bottom of the corona to large distances in the interplanetary medium. Since CMEs originate in the low solar corona, understanding the physical processes that generate them is strongly dependant on coordinated multi-wavelength observations. CMEs display a large diversity in morphology and kinematic properties, but there is presently no statistical evidence that those properties may serve to group them into different classes. When a CME takes place, the coronal magnetic field undergoes restructuring. Much of the current research is focused on understanding how the corona sustains the stresses that allow the magnetic energy to build up and how, later on, this magnetic energy is released during eruptive flares and CMEs. Multi-wavelength observations have confirmed that reconnection plays a key role during the development of CMEs. Frequently, CMEs display a rather simple shape, exhibiting a well known three-part structure (bright leading edge, dark cavity and bright knot). These types of events have led to the proposal of the ‘`standard model’' of the development of a CME, a model which predicts the formation of current sheets. A few recent coronal observations provide some evidence for such sheets. Other more complex events correspond to multiple eruptions taking place on a time scale much shorter than the cadence of coronagraph instruments. They are often associated with large-scale dimming and coronal waves. The exact nature of these waves and the physical link between these different manifestations are not yet elucidated. We also discuss what kind of shocks are produced during a flare or a CME. Several questions remain unanswered. What is the nature of the shocks in the corona (blast-wave or piston-driven?) How they are related to Moreton waves seen in Hα? How they are related to interplanetary shocks? The last section discusses the origin of energetic electrons detected in the corona and in the interplanetary medium. “Complex type III-like events,”which are detected at hectometric wavelengths, high in the corona, and are associated with CMEs, appear to originate from electrons that have been accelerated lower in the corona and not at the bow shock of CMEs. Similarly, impulsive energetic electrons observed in the interplanetary medium are not the exclusive result of electron acceleration at the bow shocks of CMEs; rather they have a coronal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号