首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对某型航空发动机涡轮叶片榫头渗铝故障,收集叶片榫头表面铝含量与渗铝层深度的离散数据,利用散点图观察样本分布,结合反应扩散理论和数理统计方法,对数据进行归纳分析,找出相应函数系数,建立函数关系式,得出叶片榫头表面铝含量与渗铝层深度的关系,为制订因该故障导致的发动机返厂检查处理流程及技术措施提供有力支撑。  相似文献   

2.
发动机榫头/榫槽接触问题的可靠性形状优化设计   总被引:1,自引:0,他引:1  
在结构可靠性形状优化的基础上,推导了接触问题随机有限元的灵敏度解析分析表达式,给出了优化分析的基本步骤,并对某发动机燕尾型榫头/榫槽接触结构,选取榫头齿颈宽和齿面倾斜角为设计变量,以榫头最大拉伸应力、齿面挤压应力及可靠度指标为约束条件,对榫头边界上节点的最大当量应力进行了优化分析。结果表明,优化后榫头和榫槽接触面上的接触压力、当量应力及可靠度指标的分布更加均匀,验证了优化分析模型的合理性及所提出的可靠性形状优化设计方法的有效性,为榫头/榫槽的结构设计提供有价值的参考。  相似文献   

3.
发动机叶片榫头角度现场检测方法   总被引:1,自引:0,他引:1  
对航空发动机叶片榫头角度进行现场测量是保证叶片加工质量的重要环节。本文结合叶片榫头的结构特点,针对使用传统的专用测具和标准件测量榫头角度存在的问题,设计了一种叶片榫头角度检测仪,并给出了相应的检测方法。实验和使用证实,该检测仪能提高检测效率,降低劳动强度,适合在生产现场使用。  相似文献   

4.
基于强度约束的叶片榫头参数化设计   总被引:2,自引:0,他引:2  
针对榫头的设计要求,介绍了榫头的设计方法和过程.以榫头重量最轻和满足静强度约束为基点,确定榫头的控制参数,实现了人机交互的榫头参数化设计.  相似文献   

5.
航空发动机整体叶盘优化设计   总被引:3,自引:0,他引:3  
介绍了利用MSC/NASTRAN的优化软件包对某航空发动机高压气机第一级整体叶盘进行优化设计,用其前后处理软件MSC/ARIES建立了优化的几何模型,有限元分析模型和优化模型。由于ARIES软件不能施加平均周向应力,平均径向应力以及疲劳寿命约束,因此对NASTRAN的输入卡片进行手工修改,添加了这几项束,经过15次优化设计循环,在满足所有约束条件下整体叶盘的重量达到了最轻。此时,整体叶盘的重量从13.329kg减少到7.243kg,重量减少了45.66%。同时,叶盘上的应力分析布得到了改善,优化前的局部高应力区不复存在,应力分布变得更为均匀。  相似文献   

6.
阐明了某机第4级压气机转子叶片在榫头部位断裂的故障特点。故障分析表明:经长期使用的叶片在修理厂大修时,为满足叶片摆动量要求在榫头底面涂尼龙胶,会使叶片自振频率有较大幅度下降;为排除3级叶片折断故障而提高的慢车转速又缩小了4级叶片的共振裕度,结果造成少数4级叶片落入慢车共振。共振发生时,不规则的尼龙胶和装配过程不规范引起的非正常接触容易导致微动磨损的加剧,从而大大降低了疲劳寿命,这是引起榫头断裂故障的主要原因。  相似文献   

7.
本文根据航空发动机管路的结构和振动特点 ,以有限元计算为基础 ,采用遗传算法为优化方法 ,在通用有限元软件 NASTRAN的平台上开发了管路振动设计优化程序。本文以调频和调幅为目标函数 ,对某一真实导管进行了优化设计 ,计算和分析表明 ,本方法能快速高效地获得最优解 ,应力计算证明这些解满足工程要求的应力分布 ,并建议在必要情况下增加管路用金属橡胶减振器以降低可能出现的振动过大。  相似文献   

8.
航空发动机空气管路应力优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
针对航空发动机空气管路系统受载应力及应变过大的问题,对该系统进行3维全尺寸弹塑性分析,讨论了载荷加载过程对应力应变的影响;对应力较大部位采用结构分解方法建立优化模型,进行管路部件应力优化,获得三通结构尺寸优化结果;利用参数灵敏度分析结果选择合适的设计变量,建立系统管线优化模型,补偿热-位移载荷产生的附加应力。优化结果显示,最大总应力降低5.49%,附加载荷应力降低12.28%。验证了方法的有效性。  相似文献   

9.
采用将准三维设计和多级局部优化联合的多级涡轮气动优化设计流程,对某型航空发动机3级涡轮进行了多级气动三维优化设计;采用人工神经网络和遗传算法对各列叶栅进行了三维局部优化,流场计算采用全三维黏性流N-S方程求解。通过优化设计,调整了功率分配,改善了各列性能,并对各列间参数进行了优化匹配,使总体性能提高,达到了设计要求。  相似文献   

10.
轮盘结构形状复杂,完全按照实际结构进行结构分析也非常困难。为此,将榫头沿根部从轮盘中分离出来,作为三维问题处理;剩下的盘体简化为轴对称问题。由于简化了盘体,忽略了局部的应力集中,为此,适当降低被简化部位的屈服应力以做补偿。这样处理是否合适,需要从得到的优化设计中取出被简化的部分进行三维弹塑性计算来校核。如不满足给定条件,调整后重新进行优化直至满足要求。   相似文献   

11.
叶片间相角对蒸汽轮机叶片颤振的影响   总被引:2,自引:0,他引:2  
蒸汽轮机叶片的气动力衰减和叶片间相位角存在密切关系, 叶片间相角是决定蒸汽轮机叶片的气动弹性稳定性的重要因素, 应用可考虑叶片间相角变化, 适用于蒸汽轮机失速颤振预测的变形激盘法, 考察了叶片间相角对蒸汽轮机叶片的气弹稳定性的影响。   相似文献   

12.
应用振型识别叶片裂纹故障初探   总被引:1,自引:1,他引:1       下载免费PDF全文
给出了一种应用叶片的弯曲振型识别叶片裂纹的方法。假设叶片为无扭曲的矩形等截面悬臂梁,同时将裂纹看成沿叶宽等深度扩展的开口裂纹,最后对应用该法检测叶片裂纹的可行性进行了探讨并提出了建议。  相似文献   

13.
裂纹对叶片固有频率影响的分析   总被引:2,自引:1,他引:2  
给出了一种两条横向裂纹对叶片弯曲固有频率影响效果的分析方法。考虑的两种裂纹为周期载荷作用下产生的双面裂纹和脉冲载荷作用下产生的单面裂纹。分析中假设裂纹为沿叶宽等深度扩展的开口裂纹,同时将叶片看成无扭曲的短形等截面悬臂梁。结果表明,单纯选用固有频率识别裂纹参数,会过低估计裂纹严重程度;在可考察的裂纹深度范围内,单面和双面裂纹对固有频率的影响效果不显著。  相似文献   

14.
带冠和冷却小孔涡轮叶片振动特性分析   总被引:2,自引:1,他引:1  
某发动机第一级涡轮叶片是带有矩形冠和9小孔冷却涡轮叶片,为分析该级叶片振动特性,建立了有限元模型,分析了小孔、均匀温度场和非均匀温度场下、叶冠边界条件等对振动特性的影响。同时,依据共振疲劳损伤寿命理论确定叶冠的最佳间隙值,来增加使用寿命。计算结果表明:在无真实的温度场时,考虑工作时的平均温度是有效的工程处理方法;小孔对叶片振动特性的影响是较微弱的。   相似文献   

15.
通过引入非定常尾迹诱导过渡的时间平均间歇因子的概念,提出常规过渡的起始点位置和尾迹诱导过渡起始点位置的算法,实现了对非定常尾迹影响下涡轮叶片上时间平均换热的数值模拟。结果显示,无论在叶片吸力面还是压力面,计算与实验符合均很好。  相似文献   

16.
低振动旋翼桨叶的动力学优化设计   总被引:5,自引:1,他引:5  
从工程应用的角度,在桨叶气动外形参数和桨毂型式确定的情况下,探讨在设计阶段如何通过设计参数的选择设计桨叶使桨根切力最小,从而降低直升机相应的振动水平。研究了3种情况的桨叶设计:(1)控制桨叶的固有频率;(2)控制桨叶挥舞一阶振型节点位置;(3)振动水平指数最小。在分析比较的基础上给出了既能降低桨根切力减小直升机相应振动水平又能改善桨叶疲劳状况的桨叶动力学优化设计方法。  相似文献   

17.
跨音速透平叶栅多目标优化设计   总被引:3,自引:0,他引:3  
本文在应用二维Euler方程及边界层方程相结合的跨音速粘流的计算方法基础上,以叶栅损失和做功能力为目标函数,采用无量纲化的多目标最小偏差法构造统一函数,然后采用可变容差法进行优化求得较为满意的解,从而形成了一种带有多混合变量、多约束以及多目标的跨音速叶栅优化设计方法。   相似文献   

18.
郭淑芬 《推进技术》1998,19(3):70-73
介绍用AutoCAD绘图软件建立绘制航空发动机故障树图形库。将故障树中使用的事件符号和逻辑门符号进行归纳、组合、分类,总结出若干种图形元素放入图形库中,供用户交互调用;调用图元时根据需要进行移动、缩放、旋转、编辑与修改等,以便在确定了故障系统顶事件、中间事件、底事件及逻辑门符号后快速而方便地绘制故障树。  相似文献   

19.
涡轮叶片气膜冷却的数值模拟   总被引:3,自引:0,他引:3  
在低雷诺数 K ε双方程紊流模型程序基础上,通过引进一种离散孔气膜冷却的喷射模型,预测了涡轮叶片上有冷气出流情况下的冷却效率,包括对不同吹风比, 不同二次流与主流的密度比,不同主流紊流度,不同展向孔间距,单排孔不同孔排位置及多排孔同时有冷气出流等多种情况,总结出了喷射模型中两个重要参数的变化规律,计算结果与实验数据符合程度良好。  相似文献   

20.
单晶材料涡轮叶片的循环蠕变分析   总被引:4,自引:1,他引:3  
对DD3材料单晶涡轮叶片进行了应力循环和应力、温度同时循环下蠕变计算,得到了叶片在两种情况下的循环蠕变结果,并对两种结果和静态蠕变作了对比分析,从而为了解叶片在实际变工况下的循环蠕变行为提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号