首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Hermean magnetosphere is likely to contain a number of wave phenomena. We briefly review what little is known so far about fields and waves around Mercury. We further discuss a number of possible phenomena, including ULF pulsations, acceleration-related radiation, bow shock waves, bremsstrahlung (or braking radiation), and synchrotron radiation. Finally, some predictions are made as to the likelihood that some of these types of wave emission exist.  相似文献   

2.
Embedded in a large mass density and strong interplanetary magnetic field solar wind environment and equipped with a magnetic field of minor strength, planet Mercury exhibits a small magnetosphere vulnerable to severe solar wind buffeting. This causes large variations in the size of the magnetosphere and its associated currents. External fields are of far more importance than in the terrestrial case and of a size comparable to any internal, dynamo-generated field. Induction effects in the planetary interior, dominated by its huge core, are thought to play a much more prominent role in the Hermean magnetosphere compared to any of its companions. Furthermore, the external fields may cause planetary dynamo amplification much as discussed for the Galilean moons Io and Ganymede, but with the ambient field generated by the dynamo and its magnetic field-solar wind interaction.  相似文献   

3.
The Sun is the largest reservoir of matter in the solar system, which formed 4.6 Gyr ago from the protosolar nebula. Data from space missions and theoretical models indicate that the solar wind carries a nearly unfractionated sample of heavy isotopes at energies of about 1 keV/amu from the Sun into interplanetary space. In anticipation of results from the Genesis mission’s solar-wind implanted samples, we revisit solar wind isotopic abundance data from the high-resolution CELIAS/MTOF spectrometer on board SOHO. In particular, we evaluate the isotopic abundance ratios 15N/14N, 17O/16O, and 18O/16O in the solar wind, which are reference values for isotopic fractionation processes during the formation of terrestrial planets as well as for the Galactic chemical evolution. We also give isotopic abundance ratios for He, Ne, Ar, Mg, Si, Ca, and Fe measured in situ in the solar wind.  相似文献   

4.
Recent observations with UVCS on SOHO of high outflow velocities of O5+ at low coronal heights have spurred much discussion about the dynamics of solar wind acceleration. On the other hand, O6+ is the most abundant oxygen charge state in the solar wind, but is not observed by UVCS or by SUMER because this helium-like ion has no emission lines falling in the wave lengths observable by these instruments. Therefore, there is considerable interest in observing O5+ in situ in order to understand the relative importance of O5+ with respect to the much more abundant O6+. High speed streams are the prime candidates for the search for O5+ because all elements exhibit lower freezing-in temperatures in high speed streams than in the slow solar wind. The Ulysses spacecraft was exposed to long time periods of high speed streams during its passage over the polar regions of the Sun. The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is capable of resolving this rare oxygen charge state. We present the first measurement of O5+ in the solar wind and compare these data with those of the more abundant oxygen species O6+ and O7+. We find that our observations of the oxygen charge states can be fitted with a single coronal electron temperature in the range of 1.0 to 1.2 MK assuming collisional ionization/recombination equilibrium with an ambient Maxwellian electron gas. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Observations in the solar wind have revealed important insights into how energetic particles are accelerated in astrophysical plasmas. In circumstances where stochastic acceleration is expected, a suprathermal tail on the distribution function is formed with a common spectral shape: the spectrum is a power law in particle speed with a spectral index of −5. Recent theories for this phenomenon, in which thermodynamic constraints are applied to explain the common spectral shape, are reviewed. As an example of potential extensions of this theoretical work, consideration is given to the acceleration of Anomalous Cosmic Rays in the heliosheath.  相似文献   

6.
Suess  S. T.  Phillips  J. L.  McComas  D. J.  Goldstein  B. E.  Neugebauer  M.  Nerney  S. 《Space Science Reviews》1998,83(1-2):75-86
The solar wind in the inner heliosphere, inside ~ 5 AU, has been almost fully characterized by the addition of the high heliographic latitude Ulysses mission to the many low latitude inner heliosphere missions that preceded it. The two major omissions are the high latitude solar wind at solar maximum, which will be measured during the second Ulysses polar passages, and the solar wind near the Sun, which could be analyzed by a Solar Probe mission. Here, existing knowledge of the global solar wind in the inner heliosphere is summarized in the context of the new results from Ulysses.  相似文献   

7.
Ulysses observed a stable strong CIR from early 1992 through 1994 during its first journey into the southern hemisphere. After the rapid latitude scan in early 1995, Ulysses observed a weaker CIR from early 1996 to mid-1997 in the northern hemisphere as it traveled back to the ecliptic at the orbit of Jupiter. These two CIRs are the observational basis of the investigation into the latitudinal structure of CIRs. The first CIR was caused by an extension of the northern coronal hole into the southern hemisphere during declining solar activity, whereas the second CIR near solar minimum activity was caused by small warps in the streamer belt. The latitudinal structure is described through the presentation of three 26-day periods during the southern CIR. The first at ∼24°S shows the full plasma interaction region including fast and slow wind streams, the compressed shocked flows with embedded stream interface and heliospheric current sheet (HCS), and the forward and reverse shocks with associated accelerated ions and electrons. The second at 40°S exhibits only the reverse shock, accelerated particles, and the 26-day modulation of cosmic rays. The third at 60°S shows only the accelerated particles and modulated cosmic rays. The possible mechanisms for the access of the accelerated particles and the CIR-modulated cosmic rays to high latitudes above the plasma interaction region are presented. They include direct magnetic field connection across latitude due to stochastic field line weaving or to systematic weaving caused by solar differential rotation combined with non-radial expansion of the fast wind. Another possible mechanism is particle diffusion across the average magnetic field, which includes stochastic field line weaving. A constraint on connection to a distant portion of the CIR is energy loss in the solar wind, which is substantial for the relatively slow-moving accelerated ions. Finally, the weaker northern CIR is compared with the southern CIR. It is weak because the inclination of the streamer belt and HCS decreased as Ulysses traveled to lower latitudes so that the spacecraft remained at about the maximum latitudinal extent of the HCS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer (ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data, as well as multi-spacecraft observations.  相似文献   

9.
The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R M3 (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s−1 to 20 s−1. Continuous measurement of fluctuations is provided with a digital 1–10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and dynamics of Mercury’s solar wind interaction.  相似文献   

10.
The interaction of the solar wind with the Martian exosphere and ionosphere leads to significant loss of atmosphere from the planet. Spacecraft data confirm that this is the case. However, the issue is how much is actually lost. Given that spacecraft coverage is sparse, simulation is one of the few ways for these estimates to be made. In this paper the evolution of our attempts to place bounds on this loss rate will be addressed. Using a hybrid particle code the loss rate with respect to solar EUV flux is addressed as well as a variety of numerical and chemical issues. The progress made has been of an evolutionary nature, with one approach tried and tested followed by another as the simulations are improved and better estimates are produced. The results to be reported suggest that the ion loss rates are high enough to explain the loss of water from Mars during earlier solar epochs.  相似文献   

11.
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome these disagreements.  相似文献   

12.
    
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched on August 3, 2004, is nearing the halfway point on its voyage to become the first probe to orbit the planet Mercury. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: (1) What planetary formational processes led to Mercury’s high ratio of metal to silicate? (2) What is the geological history of Mercury? (3) What are the nature and origin of Mercury’s magnetic field? (4) What are the structure and state of Mercury’s core? (5) What are the radar-reflective materials at Mercury’s poles? (6) What are the important volatile species and their sources and sinks near Mercury? The mission has focused to date on commissioning the spacecraft and science payload as well as planning for flyby and orbital operations. The second Venus flyby (June 2007) will complete final rehearsals for the Mercury flyby operations in January and October 2008 and September 2009. Those flybys will provide opportunities to image the hemisphere of the planet not seen by Mariner 10, obtain high-resolution spectral observations with which to map surface mineralogy and assay the exosphere, and carry out an exploration of the magnetic field and energetic particle distribution in the near-Mercury environment. The orbital phase, beginning on March 18, 2011, is a one-year-long, near-polar-orbital observational campaign that will address all mission goals. The orbital phase will complete global imaging, yield detailed surface compositional and topographic data over the northern hemisphere, determine the geometry of Mercury’s internal magnetic field and magnetosphere, ascertain the radius and physical state of Mercury’s outer core, assess the nature of Mercury’s polar deposits, and inventory exospheric neutrals and magnetospheric charged particle species over a range of dynamic conditions. Answering the questions that have guided the MESSENGER mission will expand our understanding of the formation and evolution of the terrestrial planets as a family.  相似文献   

13.
Although the elemental composition in all parts of the solar photosphere appears to be the same this is clearly not the case with the solar upper atmosphere (SUA). Spectroscopic studies show that in the corona elemental composition along solar equatorial regions is usually different from polar regions; composition in quiet Sun regions is often different from coronal hole and active region compositions and the transition region composition is frequently different from the coronal composition along the same line of sight. In the following two issues are discussed. The first involves abundance ratios between the high-FIP O and Ne and the low-FIP Mg and Fe that are important for meaningful comparisons between photospheric and SUA compositions and the second involves a review of composition and time variability of SUA plasmas at heights of 1.0≤h≤1.5R .  相似文献   

14.
The instruments on the Spartan 201 spacecraft are an Ultraviolet Coronal Spectrometer and a White Light Coronagraph. Spartan 201 was deployed by the Space Shuttle on 11 April 1993 and observed the extended solar corona for about 40 hours. The Ultraviolet Coronal Spectrometer measured the intensity and spectral line profile of HI Ly and the intensities of OVI 103.2 and 103.7 nm. Observations were made at heliocentric heights between 1.39 and 3.5 R. Four coronal targets were observed, a helmet streamer at heliographic position angle 135°, the north and south polar coronal holes, and an active region above the west limb. Measurements of the HI Ly geocorona and the solar irradiance were also made. The instrument performed as expected. Straylight suppression, spectral focus, radiometric sensitivity and background levels all appear to be satisfactory. The uv observations are aimed at determining proton temperatures and outflow velocities of hydrogen, protons and oxygen ions. Preliminary results from the north polar coronal hole observations are discussed.  相似文献   

15.
Spartan 201 is a shuttle deployed spacecraft that is scheduled to perform ultraviolet spectroscopy and white light polarimetry of the extended solar corona during two 40 hour missions to occur in September 1994 and August 1995. The spectroscopy is done with an ultraviolet coronal spectrometer which measures the intensity and spectral line profile of HI Ly up to heliocentric heights of 3.5 solar radii. It also measures the intensities of the OVI doublet at 1032 and 1037 Å and of Fe XII at 1242 Å. The HI Ly line profile measurements are used to determine the random velocity distribution of coronal protons along the line-of-sight. The absolute HI Ly intensities can be used together with electron densities from the white light coronagraph to estimate electron temperatures from hydrogen ionization balance calculations, and bulk outflow velocities from models of Doppler dimmed resonant scattering. Intensities of minor ion lines are used to determine coronal abundances and outflow velocities of O5+. Ultraviolet spectroscopy of extended coronal regions from the 11 April 1993 mission of Spartan 201 are discussed.  相似文献   

16.
17.
The extraordinary life and scientific achievements of Johannes Geiss span an almost impossible breadth of scientific topics, from the study of rocks to tenuous plasmas, from volcanoes to meteorites. But, his impact also extends way beyond the field of science. Professor Geiss is a well-known teacher and a highly successful science leader whose impact has been felt at the University of Bern, in Switzerland, and around the globe. We present here a brief summary of this highly successful career via a pictorial overview and a movie compiled by a former student who had the good luck to work with Professor Geiss during his years at the University of Bern. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

18.
Using the high-resolution mass spectrometer CELIAS/MTOF on board SOHO we have measured the solar wind isotope abundance ratios of Si, Ne, and Mg and their variations in different solar wind regimes with bulk velocities ranging from 330 km/s to 650 km/s. Data indicate a small systematic depletion of the heavier isotopes in the slow solar wind on the order of (1.4±1.3)% per amu (2σ-error) compared to their abundances in the fast solar wind from coronal holes. These variations in the solar wind isotopic composition represent a pure mass-dependent effect because the different isotopes of an element pass the inner corona with the same charge state distribution. The influence of particle mass on the acceleration of minor solar wind ions is discussed in the context of theoretical models and recent optical observations with other SOHO instruments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Profiles of the visible Fe X (6374 Å) coronal emission line as a function of height above the limb were obtained out to 1.16 solar radii in a coronal hole using the NSO/Sacramento Peak Observatory Coronagraph, Universal Spectrograph and a CCD camera. These are the first coronal line profiles obtained as a function of height in a coronal hole from the ground. Analysis of the line widths suggests a large component of nonthermal broadening which increases with height ranging from 40 to 60 km/s, depending upon the assumed temperature or thermal component of the profile.  相似文献   

20.
国外10MW风力机叶片气动布局研究   总被引:1,自引:0,他引:1  
降低风能利用成本是风力机单机装机功率向大型化发展的主要驱动力,10MW风力机已成为当今国外大型风力机研发的目标。本文简要回顾了风力机叶片空气动力研究对风力机大型化发展的贡献,探讨国外针对10MW风力机开展的新型叶片气动布局研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号