首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
核动力深空探测器现状及发展研究   总被引:1,自引:0,他引:1  
深空探测中,由于无法使用太阳能或者太阳能的利用效率太低,需要使用空间核电源。当前用于月球表面、火星表面、木星及以远的飞行任务中的核动力深空探测器,均利用的同位素核源衰变能,包括同位素热源用于温度控制和采用温差发电用于供电。研究中的深空探测核动力应用包括月球基地、载人火星飞行、无人探测、使用核反应堆裂变能等。空间裂变电源的反应堆包括液态金属冷却堆和气冷堆两种方式,前者支持温差、斯特林和布雷顿发电,后者支持布雷顿和磁流体发电。近期开始探索研究核聚变深空探测器。纵观核动力深空探测器的发展历程,同位素电源依然在深空探测中发挥着重要作用,大功率空间核电源结合电推进将成为未来深空探测的重要关注方向。  相似文献   

2.
Radial transport theory for inner radiation zone MeV He ions has been extended by combining radial diffusive transport, losses due to Coulomb friction and charge exchange reaction with local generation of 3He and 4He ions due to nuclear reactions taking place on the inner edge of the inner radiation zone. From interactions between high energy trapped protons and upper atmospheric constituents we have included a nuclear reaction yield helium flux source that was numerically derived from a nuclear reaction model originally developed at the Institute of Nuclear Researches of Moscow, Russia and implemented in the computer system at the University of Campinas, Brazil. Magnetospheric transport computations have been made covering the L-shell range L=1.0 to 1.6 and the resulting MeV He ion flux distributions show a strong influence of the local nuclear source mechanism on the inner zone energetic He ion content.  相似文献   

3.
空间热离子能量转换技术发展综述   总被引:1,自引:0,他引:1       下载免费PDF全文
空间核反应堆电源是未来空间任务大功率、长寿命能源需求的有力保障,热离子能量转换技术是空间热离子反应堆电源的关键技术之一。概述了空间热离子反应堆电源的总体构造及工作原理,从热离子能量转换的原理、热离子发电元件的类型及其特点、电极材料、试验装置等方面综述了热离子转换技术的发展现状、存在的问题及发展趋势。  相似文献   

4.
空间核电推进(Nuclear Electric Propulsion,NEP)系统是一种将核热能转换成电能,并驱动大功率电推力器而产生推力的革命性空间推进技术。和传统推进技术相比,NEP具有高比冲、大功率、长寿命等技术优势,非常适合未来大规模深空探测任务。基于NEP系统组成和小推力轨道理论,建立了以有效载荷为目标的NEP系统比质量优化模型。该模型能够解析NEP航天器的轨道运行时间、比质量、功率与有效载荷比的复杂耦合关系,为任务优化提供了计算依据。最后,利用该模型对NEP系统完成NASA "Juno号"航天任务进行了技术指标评估分析。计算表明,当NEP系统比质量达到4.8 kg/kWe时,其能将"Juno号"航天任务的地木转移时间由2 266 d缩短至665 d,有效载荷由160 kg提高到1 179 kg,极大地提高了航天器的探测能力,为任务方案的可行性论证和后续设计提供参考。  相似文献   

5.
Transient ionospheric disturbances in the total electron content (TEC) are examined before and after the M9.0 2011 off the Pacific coast of Tohoku Earthquake to find ionospheric responses to the radiation caused by Fukushima I nuclear power plant accident, which was damaged by the earthquake and tsunamis. The TEC is derived from records of a ground-based receiving network of GPS Earth Observation Network (GEONET) in Japan. Both small enhancement and disturbance of TEC were detected over the nuclear power plant after the radiation was suddenly enhanced on March 14 of 2011, while similar signatures were not detected in the other sudden radiation enhancements. Further, no continuous enhancement and disturbance lasting for more than an hour were observed over the nuclear power plant. Therefore, the results indicate that radioactive materials may not cause the ionospheric disturbance or disturb the ionosphere in highly specific circumstance even if such effects exist.  相似文献   

6.
The present measurement accuracy of the solar spectral irradiance is insufficient to derive the real long-term solar spectral irradiance variability at all wavelengths. Possible error sources are discussed. A series of new second generation solar irradiance photometers are now under construction which should considerably improve these measurements. At the same time, efforts are made to improve the absolute UV calibration methods to derive a unified UV radiation scale.  相似文献   

7.
核磁共振陀螺仪具有小体积、高精度、低功耗等优点,是未来高精度微小型陀螺的主要发展方向之一。原子气室内 Xe 核自旋的极化是衡量原子气室性能的一个重要参数,直接影响陀螺的角随机游走, 因此准确快速地测量极化场有利于研制性能更优的原子气室。为了实现Rb-Xe体系的核磁共振陀螺仪快速、原位测量Xe的极化场,提出了利用Rb电子顺磁共振频移测量Xe极化场的方法。通过激励磁场翻转Xe极化场,推导了估算Xe极化场的简单公式。实验测量了在典型核磁共振陀螺仪装置中,10nT 量级的Xe极化场,结果与理论计算相符。表明这种方法能够快速有效的在核磁共振陀螺仪原位测量Xe的极化场。  相似文献   

8.
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. “Hot” atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 108–1010 atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime.

Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: 14N(p, ) 11C, 16O(p, pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.  相似文献   


9.
There is now good evidence for astronomical sources of gamma rays above 300 GeV, detected by the atmospheric Cerenkov technique, and two apparent detections above 200 TeV with Extensive Air Shower arrays. New experiments now in operation or under construction should significantly improve the Cerenkov flux sensitivity. If very high energy cosmic rays are accelerated in compact regions, they can produce photons and neutrinos by hadronic interactions at levels which are detectable in current or proposed experiments. Observations of both gamma rays and neutrinos provide complementary information about the matter around the source and the proton source spectrum. The optimum conditions at the source for gamma ray and neutrino production by cosmic rays are determined and possible sources and source types are proposed. The status of the now funded DUMAND project, which hopes to detect very high energy astronomical neutrinos, is briefly reviewed.  相似文献   

10.
Any comprehensive evaluation of Life Support Systems (LSS) for space applications has to be conducted taking into account not only mass of LSS components but also all relevant equipment and storage: spare parts, additional mass of space ship walls, power supply and heat rejection systems. In this paper different combinations of hybrid LSS (HLSS) components were evaluated. Three variants of power supply were under consideration--solar arrays, direct solar light transmission to plants, and nuclear power. The software based on simplex approach was used for optimizing LSS configuration with respect to its mass. It was shown that there are several LSS configuration, which are optimal for different time intervals. Optimal configurations of physical-chemical (P/C), biological and hybrid LSS for three types of power supply are presented.  相似文献   

11.
The purpose of this study was to establish, on a first principles basis, the order of magnitude of energy requirements for a thermally processed, lunar regolith radiation shield constructed using an in-situ resource utilisation (ISRU) approach. This was done by developing a reference scenario habitat and using thermodynamic relationships and specific heat capacity expressions to determine the energy required to bring such a regolith volume up to sintering temperatures (c. 1,375 K). Once the energy requirements were developed some power system architectures were outlined conceptually and a nuclear power plant of c. 400 kW was suggested as a means to supply the necessary energy. This is well beyond current space nuclear applications. The study concludes that it is likely that the most efficient near-term solution is chemical processing of regolith, from an energy requirements perspective. The technology is also more mature and likely to be delivered on near term projects as it does not require such scaled-up power system architectures. Alternatively, bringing storm shelters up with the habitat to provide a means of weathering major solar events, and adding additional radiation protection to habitat quarters, possibly through a water blanket or similar mechanism, could provide a non-ISRU solution with current technology. However, in the longer term, the development of MW-scale power system architectures (fission, solar etc.), may permit a very large volume of material to be processed thermally for construction material, making a large, permanent human presence on the Moon more easily realisable.  相似文献   

12.
月球表面辐射特性研究是月球探索的一个重要领域,对于勘测月球表面形态及进行资源勘探等具有重要意义,但是目前在月球表面直接进行近距离测量的数据非常少.本文建立了基于嫦娥三号着陆器地形地貌相机和缓释电机在轨遥测数据研究月球表面辐射特性的方法,初步测算得到嫦娥三号着陆区月球表面的太阳辐射光谱反射率为0.105,发射率为0.866.所得结果能够为进一步空间探测任务提供原始测算数据,以降低设计难度及提高探测能力.   相似文献   

13.
中国海南VHF雷达具有快速扫描观测及对电离层不规则体进行二维成像的能力.采用时间序列上的连续观测,可以获得场向不规则体发展变化的一系列二维空间图像.本文对海南VHF雷达2011年10月27日夜间观测到的电离层不规则体事件进行分析,主要结果表明,本次观测到的不规则体可分为三个阶段.在初步形成阶段,不规则体开始出现时非常微弱,发展变化很慢,主要表现为向上可扩展,持续时间约14min.在扩大增强阶段,不规则体快速向上并向两侧扩展,持续时间约14min;不规则体强度前期迅速增大,后期略有减弱,空间尺度达200km以上.在东漂离开阶段,不规则体强度进一步减弱,扩展面积达到最大,主要表现为东向漂移,持续时间近30min.这次观测首次给出了海南地区上空电离层不规则体的形成和发展过程.结合其他台站的观测进行对比分析发现,海南观测到的雷达羽与其他地区的雷达羽具有明显不同,海南地区的雷达羽特性及其对应的物理过程有待进一步观测研究.   相似文献   

14.
空间探测用半导体温差发电系统   总被引:1,自引:0,他引:1  
核热半导体温差发电器是目前空间探测器常用的电源系统,特别是对于那些远离太阳的空间探测器,这种装置是目前唯一实用的供电系统。它作为空间探测器不可缺少的关键部分,以及在可以预见的未来空间探测中起着的重要作用,一直是美国航空航天局(NASA)空间计划中的一个重要研究项目。文章将介绍这种电源系统的基本结构、主要特点及其应用。  相似文献   

15.
Chinese meteorological satellite, Fengyun (FY) Satellite, has a polar-orbiting series and a geostationary series. Up to now, 5 polar-orbiting (FY-1A/B/C/D and FY-3A) and 5 geostationary (FY-2A/B/C/D/E) satellites were launched. FY data has been being intensively applied not only to meteorological monitoring and prediction but also to many other fields regarding ecology, environment, disaster, space weather and so and. The FY data sharing system, FengyunCast, is now one of the three components of global meteorological satellite information dissemination system, GEONETCast. The first satellite of the new generation polar-orbiting series, FY-3A, was launched on 27 May, 2008, demonstrating the FY polar-orbiting satellite and its application completed a great leap to realize three-dimensional observations and quantitative application. The first of the next generation geostationary series (FY-4) is planned to launch in 2014.   相似文献   

16.
The risk of radiation-induced cancer to space travelers outside the earth's magnetosphere will be of concern on missions to the Moon and beyond to Mars. High energy galactic cosmic rays with high charge (HZE particles) will penetrate the spacecraft and the bodies of the astronauts, sometimes fragmenting into nuclear secondary species of lower charge but always ionizing densely, thus causing cellular damage which may lead to malignant transformation. To quantitate this risk, the concept of dose equivalent (in which a quality factor Q as a function of LET is assumed) may not be adequate, since different particles of the same LET may have different efficiencies for tumor induction. Also, RBE values on which quality factors are based depend on response to low-LET radiation at low doses, a very difficult region for which to obtain reliable experimental data. Thus, we introduce a new concept, a fluence-related risk coefficient (F), which is the risk of a cancer per unit particle fluence and which we call the risk cross section. The total risk is the sum of the risk from each particle type: sigma i integral Fi(Li) phi i(Li) dLi, where Li is the LET and phi i(Li) is the fluence-LET spectrum of the ith particle type. As an example, tumor prevalence data in mice are used to estimate the probability of mouse Harderian gland tumor induction per year on an extra-magnetospheric mission inside an idealized shielding configuration of a spherical aluminum shell 1 g/cm2 thick. The combined shielding code BRYNTRN/GCR is used to generate the LET spectra at the center of the sphere. Results indicate a yearly prevalence at solar minimum conditions of 0.06, with 60% of this arising from charge components with Z between 10 and 28, and two-thirds of the contribution arising from LET components between 10 and 200 keV/micrometers.  相似文献   

17.
根据一系列简化模型和有关的观测资料,Lingenfelter和Ramaty算得1937—1967年三个太阳活动周期内全球14C产率的平均值为2.2±0.414C/cm2·s,以及1956—1961年太阳耀斑引起的年平均14C产率,其中1956.2.23太阳耀斑引起的当年14C平均产率高达2.3314C/cm2·s,使大气中14C浓度增加近8‰.   相似文献   

18.
Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these PAHs absorb in the visible. C10H8+ has 12 discrete absorption bands which fall between 6800 and 5000 angstroms. The strongest band at 6741 angstroms falls close to the weak 6742 angstroms diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8+ is responsible for some of the DIBs can be tested by searching for new DIBs at 6520, 6151, and 5965 angstroms, other moderately strong naphthalene cation band positions. If C10H8+ is indeed responsible for the 6742 angstroms feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10+ is dominated by a strong band at 4435 angstroms in an Ar matrix and 4395 angstroms in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 angstroms. If C16H10+, or a closely related pyrene-like ion is indeed responsible for the 4430 angstroms feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.  相似文献   

19.
我们认为,在沉降粒子的形成中,磁尾粒子的散射是极其重要的。本文从粒子的轨道理论人手,通过对近900条粒子轨道的具体计算,研究了磁尾粒子在晨昏电场作用下的投掷角变化。计算结果清楚地显示出了磁尾粒子在晨昏电场的作用下,经历着明显的散射过程。运动经过非小扰动区的磁尾粒子在非小扰动区内经多次反射,磁矩不再是不变的,从而投掷角改变,使得一个原在磁尾为各向同性的投掷角分布,在粒子运动到远离中性线的近地区域时改变成为一个近麦氏分布。我们还研究了这些粒子的空间经历,发现这些离开磁尾进入近地区域的粒子在发生散射的同时还发生了空间分离——晨昏分离、纬向分离以及质子和电子之间的相对空间分离,给出了清晰的粒子沉降图象。   相似文献   

20.
陆基飞机大下沉速度对称着陆试验方法   总被引:2,自引:1,他引:1  
为了安全高效地进行着陆试验以实现起落架结构强度和刚度试飞考核,从讨论飞机进场着陆飞行与起落架运动受载入手,深入分析了影响着陆下沉速度的诸多相关因素,并提炼出关键的影响与控制因素,在此基础上提出平飞飘落接地和直线下滑接地等着陆操纵技术以及多次着陆试验训练进行操纵方法学习、经验累积和反馈迭代的综合飞行试验方法.运用该方法在某型陆基飞机着陆试验中,最大下沉速度达2.47 m/s,满足相关要求,从而实现了该型飞机着陆冲击条件下的起落架结构强度考核.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号