首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
仿蛇机器人可望用于搜救等领域,但已研制的蛇型机器人均存在驱动效率低和越障能力不足等问题.文中用多功能摩擦实验机研究了驱动蛇运动的腹部及腹侧部鳞片的摩擦特性及摩擦行为,并结合体视显微镜等方法研究其表面几何结构特征.结果表明,腹鳞和侧鳞使蛇向后运动时表现的摩擦因数比向前运动要高60%,具有各向异性特性,这种不对称性与鳞片的结构特点和神经信号对腹鳞状态的调节存在直接的关系.生物蛇的腹鳞所表现的高驱动摩擦性能和低摩擦阻力为蛇型机器人仿生"皮肤"的设计提供几何仿生依据.  相似文献   

2.
一种基于腹足动物运动机理的介入机器人   总被引:1,自引:0,他引:1  
在对腹足动物运动机理研究的基础上,基于仿生学原理提出一种介入机器人设计方案.通过理论建模及实验手段对机器人仿生设计效果及运动性能进行研究.结果表明:对粘液功能的模拟方案正确;机器人正常运行速度由直线微马达伸缩速度决定,但过快的微马达运动方向变化会导致机器人运行效率的降低.  相似文献   

3.
针对复杂环境下视觉监控需要满足大范围、高精度搜索和保持对目标的持续平滑跟踪的要求,设计了一种并联仿生眼造型。然而当前并联仿生眼多采用单目标优化,无法有效保证仿生眼造型的运行精度、平台倾角、机构灵敏度以及运动传递性能。为此,采用改进的非支配排序遗传算法(NSGA-Ⅱ),在铰链偏角、驱动件尺寸、安装空间等约束条件下对多目标的仿生眼造型参数进行优化,并搭建实验样机进行模拟实验。实验结果表明:设计的仿生眼造型具有0.01°的眼球运动精度,99.23°/s的角速度和502.5°/s~2的角加速度,可实现大视野搜索和快速、平滑的跟踪目标。  相似文献   

4.
壁虎通过脚掌独特的外翻机制可以迅速地在壁面实现黏附与脱附。本文通过对壁虎脚掌外翻脱附过程的仿生研究,模仿壁虎外翻脱附机理,以形状记忆合金丝为驱动器,设计仿壁虎柔性脚掌,开展力学分析与计算。基于形状记忆合金的驱动特性及仿壁虎机器人的运动步态,设计了仿壁虎柔性脚掌的控制策略。最后分析了脚趾有无外翻动作脱附时的受力情况,实验测试了柔性脚趾的弯曲与外翻脱附性能,验证了仿壁虎柔性脚掌设计的有效性和可行性。  相似文献   

5.
运动和感官进程之间紧密的相互作用,是生物视觉系统进行目标距离估计和观察周围环境的重要特征.为了建立适合套索驱动柔性细长机器人视觉系统模型,分析了通过生物眼球运动策略,以获得准确距离估计和环境信息的机理.此外,探讨了在摄像机系统中通过模拟生物眼球运动策略进行距离估计和周围环境观察的可能性,以及通过纯机械方式,模拟基于Listing法则眼球扫视运动的可能性.最后,提出Listing平面应是套索驱动机器人视觉测量和空间姿态控制结合点的观点.  相似文献   

6.
鞭毛菌及模仿其运行的微机器人在靠近壁面游动时,其运动模式与远离壁面时有所不同。针对这一现象,本文利用抗力理论和Stokes方程的线性性质,对鞭毛菌在壁面附近运动时流体对其施加的作用力进行分析,建立了鞭毛菌近壁运动的动力学模型。同时计算了细菌在平行于壁面平面内的运动轨迹与游动速度,并与实验数据进行对比分析,结果验证了该理论模型 的有效性。在此基础上,探讨了鞭毛尾的几何和运动学参数与细菌的速度变化量之间的关系。本文研究为微型仿生游动机器人运动控制时规避近壁效应提供参考依据。  相似文献   

7.
随着并联机器人技术的发展,其运动性能的提升成为了发展需求,指出了研究工作空间和奇异位形的必要性。以研究方法为主线,详细阐述了工作空间和奇异位形的国内外研究现状及特点,进一步提炼出个体的创新思想和面临的共同难题。通过深入分析研究方法的原理,找到了解决共同难题的突破口,同时剖析了研究中的尚存难题。结合未来的发展趋势,从结构综合和理论创新两个方面进行突破,能够为并联机器人的发展提供强劲动力。得出的结论和展望给从事这一领域的研究者们提供了参考。  相似文献   

8.
微型仿生扑翼飞行器是一种新概念的微型飞行器。但它不是对传统飞行器的简单几何缩小,当其特征尺度缩小到一定尺度时,系统内各种因素的相对影响将产生质的变化。针对微型仿生扑翼飞行器的机械扑翼系统,包括微驱动器、仿生翅、运动系统和动力源等,本文进行了尺度效应分析。分析结果表明,当尺寸减小时,仿生飞行更容易实现:通过共振能实现高频运动,微静电、电磁和压电驱动器都能满足扑翼系统功率需求。这为设计和研制微型仿生扑翼飞行器提供了理论依据。  相似文献   

9.
对仿生微型扑翼飞行器相关的空气动力学问题的研究进展进行了综述,并分析了未来发展面临的机遇与挑战。与自然界的飞行生物相比,目前仿生扑翼飞行器的飞行能力还很笨拙,距离高仿生还有较大距离。其中,所涉及的低雷诺数非定常空气动力学问题成为研究者在深入研究时面临的一个主要难题,关键在于数值模拟和风洞实验均难以准确模拟飞行中的实际状态。具体面临的难题主要包括:(1)仿生微型扑翼飞行器所处的雷诺数为103~105量级,属于对转捩与湍流非常敏感的区域,相关的气动机理复杂;(2)柔性翼在飞行中密切相关的动气动弹性问题;(3)高机动飞行导致的动气动弹性耦合飞行力学问题;(4)扑翼飞行的复杂姿态对飞控系统的挑战及反馈耦合算法的设计等。这些层层深入的多学科耦合难题导致了目前具备的研究手段难以为仿生扑翼飞行器的研究提供定量的分析与改进设计。在解决上述难题的基础上,未来可进一步在高机动灵活飞行姿态方面进行深入研究,对仿生柔性翼的刚度分布开展详细设计,使仿生扑翼飞行器具有像自然界飞行生物一样的主动变形能力,可在复杂的环境下具备高机动飞行能力,最终实现高仿生外形和性能的人造飞鸟或人造飞虫。  相似文献   

10.
微小型仿生飞行机器人柔性翅的仿生设计与实验研究   总被引:2,自引:0,他引:2  
自然界昆虫和小鸟翅膀柔性在提高气动效率和飞行稳定性方面具有很大优势,因而翅的柔性仿生研究将成为目前微小型仿生飞行机器人的重要方向.以昆虫翅膀为基础,进行了柔性翅的仿生机械设计,并重点对其柔性进行了分析和实验研究.实验结果表明,柔性翅的展弦比和前缘梁刚度对升力有较大的影响,其中变刚度前缘梁和大展弦比有益于升力的产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号