首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the ionospheric research, various progresses have been made during the last two years. This paper reviews the recent works of Chinese scientists. For convenience, the contents include: ionospheric storms and space weather; ionospheric irregularities and scintillation; ionospheric variability; ionospheric disturbances; ionospheric response to solar eclipses; ionospheric coupling with atmosphere and lithosphere; ionospheric climatology; ionospheric modeling; and ionospheric prediction and application.   相似文献   

2.
To develop an understanding of near-Earth space's response to solar activities and the coupling among different layers in geospace, China has initiated a ground base program to monitor China's geospace environment called the Meridian Space Weather Monitoring Project (Chinese Meridian Project). The effort consists of a chain of 15 ground-based observatories located roughly along 120°E longitude and 30°N latitude. Each observatory is equipped with multiple instruments to measure key parameters such as the baseline and time-varying geomagnetic field, as well as the middle and upper atmosphere and ionosphere from about 20 to 1000 kilometers. This project started collecting data in 2012. We will give a brief introduction to the Chinese Meridian Project, and present recent scientific results mainly in ionospheric and atmospheric studies.   相似文献   

3.
The ionosphere varies over multiple time scales, which are classified into two categories: the climatology and weather variations. In this national report, we give a brief summary of recent progresses in ionospheric climatology with focus on (1) the seasonal variations, (2) solar cycle effects, and (3) empirical modeling of the ionosphere. The seasonal variations of the ionosphere have been explored in many works to give a more detailed picture with regional and global features at various altitudes by analyzing the observation data from various sources and models. Moreover, a series of studies reported the response of the ionosphere to solar cycle variations, which revealed some novel and detailed features of solar activity dependence of ionospheric parameters at different altitudes. These investigations have improved our understanding on the states of the ionosphere and underlying fundamental processes, provided clues to future studies on ionospheric weather, and guided ionospheric modeling, forecasting and related applications.   相似文献   

4.
This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interpret the observed variation of ionosphere structure. Reasons why the positive storms are dominant in the winter whereas the negative ones are dominant in the summer season present the special interest for the mid-latitude ionosphere. A theoretical analysis of the processes controlling the ionospheric response to the geomagnetic storms has showed a good agreement between the simulated results and measurements, as well as the crucial role of the neutral composition variations to fit the calculated and the observed ionospheric parameters.   相似文献   

5.
The CSES (China Seismo-Electromagnetic Satellite) is the electromagnetism satellite of China's Zhangheng mission which is planned to launch a series of microsatellites within next 10 years in order to monitor the electromagnetic environment, gravitational field. The CSES 01 probe (also called ZH-1) was launched successfully on 2 February 2018, from the Jiuquan Satellite Launch Centre (China) and is expected to operate for 5 years in orbit. The second probe CSES 02 is going to be launched in 2022. The scientific objectives of CSES are to detect the electromagnetic field and waves, plasma and particles, for studying the seismic-associated disturbances. To meet the requirements of scientific objective, the satellite is designed to be in a sun-synchronous orbit with a high inclination of 97.4° at an altitude around 507 km. CSES carries nine scientific payloads including Search-coil magnetometer, Electric Field Detector, High precision Magnetometer, GNSS occultation Receiver, Plasma Analyzer, Langmuir Probe, two Energetic Particle Detectors (including an Italian one), and Tri-Band Transmitter. Up to now, CSES has been operating in orbit for 2 years with stable and reliable performance. By using all kinds of data acquired by CSES, we have undertaken a series of scientific researches in the field of global geomagnetic field re-building, the ionospheric variation environment, waves, and particle precipitations under disturbed space weather and earthquake activities, the Lithosphere-Atmosphere-Ionosphere coupling mechanism research and so on.   相似文献   

6.
High-energy electron precipitation in the high latitude regions enhances the ionization of the atmosphere, and subsequently increases the atmospheric conductivities and the vertical electric field of the atmosphere near the ground as well. The High-Energy Electron Flux (HEEF) data measured by the Fengyun-3 meteorological satellite are analyzed together with the data of near-surface atmospheric vertical electric field measured at the Russian Vostok Station. Three HEEF enhancements are identified and it is shown that when the HEEF increases to a certain level, the local atmospheric vertical electric field near the ground can increase substantially than usual. The response time of the electric field to HEEF enhancement is about 3.7 to 4 days.   相似文献   

7.
The Chinese Meridian Space Weather Monitoring Project (Meridian Project for short) is a ground-based geospace monitoring chain in China. It consists of a chain of 15 ground-based observatories located roughly along 120°E longitude and 30°N latitude. Each observatory is equipped with multiple instruments to measure key parameters such as the baseline and time-varying geomagnetic field, the middle and upper atmosphere and ionosphere from about 20 to 1000km. This project started collecting data in 2012. Here a brief overview of the Chinese Meridian Project is given, and most recent science results mainly in the ionospheric and atmospheric studies are presented.   相似文献   

8.
In this report the research results by Chinese scientists in 2014-2016 are summarized. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches associated with ground-based observation capability development, dynamical processes, and properties of circulation and chemistry-climate coupling of the middle atmospheric layers.   相似文献   

9.
In this paper we summarize the research results by Chinese scientists in 2016-2018. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches associated with groundbased observation capability development, dynamical processes, and properties of circulation and chemistryclimate coupling of the middle atmospheric layers.   相似文献   

10.
This paper presents a brief summary of our recent work based on global MHD simulations of the Solar wind-Magnetosphere-Ionosphere (SMI) system with emphasis on the electrodynamic coupling in the system. The main conclusions obtained are summarized as follows. (1) As a main dynamo of the SMI system, the bow shock contributes to both region 1 Field-Aligned Current (FAC) and cross-tail current. Under strong interplanetary driving conditions and moderate Alfven Mach numbers, the bow shock's contribution may exceed more than fifty percent of the total of either region 1 or cross-tail currents. (2) In terms of more than 100 simulation runs with due southward Interplanetary Magnetic Field (IMF), we have found a combined parameter f = EswPswMA-1/2 (Esw, Psw, and MA are the solar wind electric field, ram pressure, and Alfven Mach number, respectively): both the ionospheric transpolar potential and the magnetopause reconnection voltage vary linearly with f for small f, but saturate for large f. (3) The reconnection voltage is approximately fitted by sin3/2θIMF/2, where θIMF is the IMF clock angle. The ionospheric transpolar potential, the voltage along the polar cap boundary, and the electric fields along the merging line however defined they may be, respond differently to θIMF, so it is not justified to take them as substitutes for the reconnection voltage.   相似文献   

11.
This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010?2012. The focuses are placed on the advances in construction of ground-based remote sensing facilities, the mean state and long-term changes in the middle atmosphere circulation, the prevailing dynamical processes, and the coupling of the middle atmospheric layers.   相似文献   

12.
In this report we summarize the research results by Chinese scientists in 2018-2020. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches on atmospheric structure and composition, climate and chemistry-climate coupling and climate modelling, dynamics in particular those inducing the coupling of the atmospheric layers.   相似文献   

13.
The ionospheric effect from solar activity can be seen as the background in the process of detecting the ionospheric precursor prior to strong earthquakes. The ionospheric variation induced by the forthcoming earthquake can be covered by the strong solar background during the period of high solar activity. The issue of how to remove the ionospheric effect from solar radiation is of outstanding significance. In this paper, a method of Empirical Mode Decomposition (EMD) is used to eliminate the solar background. As a case study, the global ionospheric map TEC before the M9.0 Tohoku earthquake on 11 March 2011 is analyzed. After the effect of solar radiation is removed using the EMD method, the precursor of the imminent earthquake is more obvious. The ionospheric anomaly had a local character and only appeared close to the earthquake epicenter while the useful signals were covered by the solar radiation background with traditional method, which implies that the EMD method is effective in eliminating solar radiation background.   相似文献   

14.
The Essential Climate Variables (ECVs), such as the atmospheric thermodynamic state variables and greenhouse gases, play an important role in the atmosphere physical processes and global climate change. Given the need of improvements in existing ground-based and satellite observations to successfully deliver atmosphere and climate benchmark data and reduce data ambiguity, the Climate and Atmospheric Composition Exploring Satellites mission (CACES) was proposed and selected as a candidate mission of the Strategic Priority Research Program of Chinese Academy Science (SPRPCAS). This paper presents an overview of the key scientific questions and responses of ECVs in relation to global change; the principles, algorithms, and payloads of microwave occultation using centimeter and millimeter wave signals between low Earth orbit satellites (LEO-LEO microwave occultation, LMO) as well as of the LEO-LEO infrared-laser occultation (LIO); the CACES mission with its scientific objectives, mission concept, spacecraft and instrumentation.   相似文献   

15.
A theoretical model of ionospheric electric fields at mid- and low-latitudes is developed. In the geomagnetic dipolar coordinate system, the ionospheric dynamo equations were solved, and the ionospheric electric potential and electric field were derived respectively. Major parameters for the model inputs, such as the neutral winds, the densities and temperatures of electron, ions and neutrals, are obtained from empirical models. The global ionospheric electrical potential and field at mid- and low-latitudes derived from our model are largely in agreement with the results presented by other authors and the empirical model. Using our model, it is found that the diurnal component of the HWM93 wind mainly contributed to the formation of the vertical electric field, while the semidiurnal component mainly contributed to the zonal electric field. Finally, by adjustment of the input F region winds and conductivities, most discrepancies between our model and the empirical one can be eliminated, and it is proved that the F region dynamo is the most significant contribution to the electric fields.   相似文献   

16.
Comparison of regular (diurnal, seasonal and solar cycle) variations of high-latitude,mid-latitude and low-latitude ionospheric characteristics has been provided on basis of local empirical models of the peak electron density and the peak height. The local empirical models were derived from the hand-scaled ionogram data recorded by DPS-4 digisondes located at Norilsk (69°N, 88°E), Irkutsk (52°N, 104°E) and Hainan (19°N, 109°E) for a 6-year period from December, 2002 to December, 2008. The technique used to build the local empirical model is described. The primary focus is diurnal-seasonal behavior under low solar activity and its change with increasing solar activity. Both common and specific features of the high-latitude (Norilsk), mid-latitude (Irkutsk) and low-latitude (Hainan) regular variations were revealed using their local empirical models.   相似文献   

17.
In this report we summarize the research results by Chinese scientists in 2012–2014. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches related to ground-based observation capability development, dynamical processes, the property of circulation and chemistry-climate coupling of the middle atmospheric layers.  相似文献   

18.
The five main types of antisunward propagating energetic fluxes (particles and emission) may be thought of as well established to date, the effects of which lead to a particilar character of disturbance in the near-terrestrial environment (the Earth's magnetosphere, ionosphere and atmosphere). The strongest global restructuring of the magnetosphere and ionosphere is caused by fluxes of relatively dense n of 1-70 cm-3 at the Earth's orbit) Solar Wind (SW) quasi-neutral, low-energy (E < 10 keV) plasma which cause magnetospheric and ionospheric storms lasting 24 hours or longer. For that reason, main attention is given to their study at the initial stage of research. The physical essence of the method of predicting disturbances in the near-terrestrial space environment, the amplitude of which can be expressed in, for example, the Kp index units, involves:(1) identifying all the most geo-effective SW streams of type, (2) determing their sources on the solar disk,and (3) quantifying the correlations between the characteristics of their solar sources with a maximum value of the Kp-index that is caused by the concerned type of SW stream. Semi-phenomenological relations have been obtained, which relate parameters of type SW stream sources to characteristics of geomagnetic storms:storm commencement, the time at which the storm intensity reaches its maximum values, the storm duration,as well as to the storm amplitude expressed in terms of geomagnetic indeces.   相似文献   

19.
Kelvin-Helmholtz (K-H) waves are formed from the triggeringof the K-H instability on the magnetopause, which is a candidatemechanism for solar wind entry into the magnetosphere, especially undernorthward interplanetary magnetic field conditions. In this study, aK-H wave event was identified from the observation of probe Bof the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission on 15 May 2008. A new method to determinethe wave parameters of the K-H waves in single-spacecraft observationsis proposed. The dominant wave period is determined by three kinds ofspectrograms for three key parameters, namely the ion density, the iontemperature, and the z component of magnetic field. The phasevelocity is estimated by calculating the center-of-mass velocity of thedetected K-H vortex region. This approximation is validated bycomparison with other alternative methods. The method to determine thewave parameters is a first step to further study K-H wave properties and their relationship with interplanetaryconditions.   相似文献   

20.
Using 86 CME-interplanetary shock events,the correlation between the peak values of (a) the solar wind parameters(Bz,Ey,Pdyn) and the geomagnetic indices(SYM-H,ASY-H,Kp), (b) the coupling functions(Borovsky,Akasofu,Newell) and the geomagnetic indices,(c) the solar wind parameters/coupling functions/geomagnetic indices and the ionospheric parameter(Δf0F2min), are investigated.The statistical results show that in group(a),Bz min and SYM-Hmin have the best correlation,that in group(b),the best correlation is between the peak values of Akasofu function (Amin) and SYM-Hmin,and that in group(c),the best correlation is between Kpmax andΔf0F2min. Based on the statistical results,a method for predicting f0F2 of a single station is attempted to be set up.The input is modified Bz min and the outputs are SYM-Hmin andΔf0F2min.Then 25 CME-IPS events that caused geomagnetic storms in 1998 and 2009 are used to check the prediction method. The results show that our method can be used to predict SYM-Hmin andΔf0F2min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号