共查询到19条相似文献,搜索用时 46 毫秒
1.
对一压气机平面叶栅进行全三维数值模拟,分别对两种不同叶尖间隙情况下,移动端壁对叶栅性能及泄漏流流动结构的影响进行分析。详细对比了不同条件下,叶栅损失,泄漏涡传播轨迹及影响范围,泄漏流量等参数的变化,同时通过三维流线结构的对比,对泄漏流在间隙中的流动特点及其在通道中与主流的相互作用进行分析。结果表明:移动端壁加入使泄漏流量增加,泄漏涡传播轨迹向远离吸力面,靠近端壁的方向偏移,削弱通道流与泄漏流之间的剪切作用,改变通道中的各个二次流动结构所占比例。间隙较小时,移动端壁的影响主要集中在端壁附近,而间隙较大时,移动端壁能够抑制叶顶分离涡,从而影响整个间隙中泄漏流的速度分布,进一步削弱通道流与泄漏流动之间的剪切作用。 相似文献
2.
为了研究压气机机匣端壁抽吸对间隙泄漏流动控制的可行性和有效性,以高负荷压气机叶栅为研究对象,通过数值模拟方法对不同抽吸位置和抽吸流量率控制参数下的计算工况进行了对比和分析。研究结果表明:端壁抽吸可以直接地影响叶尖泄漏流的结构形态和存在形式,减弱叶尖泄漏流的强度和影响范围,进而提升压气机叶栅的性能;当抽吸槽覆盖范围包含叶尖泄漏流形成位置及稍靠后附近区域时,所对应的抽吸方案具有较好的控制效果,在0°攻角和0.5%的抽吸流量条件下前槽抽吸和中槽抽吸分别可获得7.04%和7.76%的叶栅总压损失增益;并且进一步研究发现端壁抽吸流量率存在上临界值,应针对不同攻角工况,在其相应的临界值范围内选择合理的抽吸流量,以达到用较小的吸气量实现对间隙泄漏流的控制。 相似文献
3.
文中通过压气机叶片“修型”叶栅和常规叶栅的对比实验 ,研究了“修型”叶栅栅后三维流动特征。试验结果表明 ,对常规压气机叶片端部尾缘进行局部修型 (即改变叶片的几何形状 ,但与“端弯”方式不同 ) ,在叶栅损失系数基本不变或略有下降的前提下 ,可以有效地改善和控制栅后出口气流角沿叶高的分布 ,以满足下游动叶进口气流方向的要求。平面叶栅试验结果还表明 ,尽管对常规叶栅端部尾缘实施局部修型 ,减小了端区的叶片出口构造角 ,但对整个气流转折角影响不是太大。同时 ,叶栅自身的流通能力基本不受影响 ,甚至有所改善。此技术已成功地应用于多级压气机和喘振裕度的改善、效率的提高以及压气机不稳定脉动压强 (叶片激振动 )和乱分离的抑制 相似文献
4.
5.
为减小压气机间隙流动带来的流动损失,提出了一种新的叶顶结构,即在常规叶片叶顶上构造出由数个小叶片组成的叶栅.通过对具有该结构叶片的三维流场进行数值模拟,分析了端壁移动对压气机间隙流场的影响.结果表明:该结构明显改善了叶顶附近的流动状况,从泄压和导流两方面抑制了叶顶附近流体从压力面向吸力面的泄漏,有效削弱泄漏涡的强度,进而减小泄漏涡扩散带来的损失,提高了压气机气动性能,相比常规叶片叶栅出口总压损失系数减小达1.158%. 相似文献
6.
7.
利用NUMECA软件对某线性叶栅的三维流场进行了数值模拟,对比研究了小叶尖间隙和大叶尖间隙时叶尖泄漏涡流的形成和发展,探讨了叶尖间隙大小对叶栅流场和气动性能的影响。研究表明,随着叶尖间隙的增大,叶尖泄漏射流发展成为叶尖泄漏涡,涡流范围不断增大,涡流强度增大趋缓,涡流使得气流偏转减小。从小间隙逐渐增大到大间隙,总压损失与叶片载荷均增大,而在大叶尖间隙时,总压损失增加并不显著,叶片载荷增大趋缓。其结论为进一步揭示叶尖间隙涡流的流动机理以及工业燃气轮机的优化设计提供了参考。 相似文献
8.
9.
蔡明;王利敏;高丽敏;景丽娜;王磊 《空气动力学学报》2025,43(1):44-52
良好的平面叶栅风洞流场品质是保证叶栅试验数据有效性的关键。详细测量并分析了某亚声速压气机平面叶栅在不同来流条件下的流场品质,根据叶栅风洞情况建立了相应的上端壁抽吸调控方案,研究了不同抽吸强度下上端壁抽吸对叶栅流场品质的改善效果。研究表明:高负荷压气机叶栅在整个工作范围均存在栅前流场不均匀、来流攻角不准确的问题,叶栅被测通道的实际攻角比风洞几何设定值大2°~3°。随着叶栅负荷增大(来流马赫数和攻角增加),流场品质逐渐下降;来流攻角同时影响着栅前马赫数和气流角的均匀性,来流马赫数主要影响栅前马赫数的均匀性。上端壁抽吸能够有效改善大攻角下叶栅流场品质不佳的问题,存在使叶栅流场品质达到最佳的临界抽吸静压,超过临界值后叶栅流场品质逐渐下降。临界抽吸静压下,栅前流场均匀性良好,被测通道的攻角与设定值的差异减小至0.5°~0.9°;叶栅二维性和出口总压损失周期性均有所提升,但是叶栅出气角周期性基本不变。 相似文献
10.
本文将二次流理论与端壁附面层理论相关联,提出一种用于预测轴流压气机叶栅通道内的端壁附面层及叶片力亏损的新方法。附面层主流流动采用包含叶片力亏损的动量积分方程,横流流动采用双层速度分布模型,使用二次流分析和有限差分计算方法预测横流外层速度分布,主流流动和横流流动交替计算。用于两种高负荷压气机叶栅的预测结果表明,不仅端壁附面层发展的预测结果与实验结果吻合较好,而且叶片力亏损发展的预测值也与实验值一致性较好;此外,该方法不仅自动,而且还能较准确地预测S形横向流动的发展。 相似文献
11.
为了分析转子叶顶间隙值和改型对压气机性能的影响,以典型轴流跨声速压气机NASA stage 35为对象,对不同叶顶间隙值的压气机进行数值模拟.结果表明:叶顶间隙增大并且泄漏流强度提高,会导致脱体激波位置前移,转子吸力面激波作用位置后移,前缘溢流现象减弱,叶尖泄漏涡与激波作用增强,间隙区域涡量增加,靠近前缘的涡核向下游移动,但附面层与激波之间的作用减弱;不同叶顶间隙值的压气机失速机制不同,在小间隙下压气机失速是由叶尖泄漏涡和转子吸力面附面层分离共同作用引起的,在大间隙下压气机失速是由叶尖泄漏涡引起的;在研究的变化范围内,叶顶间隙值为0.50τ时,压气机性能最好,峰值效率和稳定裕度分别提高了0.16%和2.39%;将最优间隙改型成平行扩张式和正弦波间隙后,压气机性能提高,脱体激波后移,叶尖泄漏涡与激波作用程度减弱,转子吸力面附面层分离减弱,改型间隙能够减少叶片制作材料,减轻发动机质量. 相似文献
12.
轴流压气机转子叶尖间隙流动结构的数值研究 总被引:3,自引:0,他引:3
为进一步加深对轴流压气机转子叶尖间隙内泄漏流/涡流动结构的认识,针对某台用于高压压气机低速模拟的四级重复级大尺度轴流压气机上的转子,采用定常数值方法开展了详细的研究。首先用已有的试验结果校核了计算方法的可靠性,随后研究了设计点工况下端区复杂流动结构和流动损失的机理,最后比较了无叶尖间隙和不同叶尖间隙大小的轴流压气机转子端区流动结构的差别,以及设计点和近失速情况下叶尖泄漏涡结构、泄漏流/主流交界面、端壁堵塞以及端壁损失的区别。结果表明,在62.5%间隙高度以下的叶尖区域内,从前缘叶尖间隙流出的流体会卷吸成叶尖泄漏涡,且随间隙高度的增加其占据的叶尖泄漏涡的位置由内而外;而在62.5%间隙高度以上,从转子前缘间隙内流出的流体不会卷吸成叶尖泄漏涡,随间隙高度的增加流动受叶尖泄漏涡的影响越来越小,更易出现二次及多次泄漏,且所占据的弦长范围也更宽广;设计状态下,叶尖泄漏涡在向下游发展的过程中会逐步膨胀,并与主流强烈掺混,无量纲流向涡量迅速减小,但无量纲螺旋度值显示其仍能保持集中涡的特征。 相似文献
13.
14.
进行了不同冲角、不同电压以及不同电极安装位置下等离子体对大折转角扩压叶栅性能的影响研究.结果表明,当冲角增大时,分离流动加剧是叶栅损失增加的主要原因,而端壁附面层内的摩擦损失则由于流向速度的减小反而减少;等离子体在三种工况下(i=0°,5°,-5°)均可有效控制栅内流动分离、减小叶栅损失、增加叶片负荷,电压越大、电极安装位置越接近分离起始位置,其控制效果越明显;随着冲角的增加,等离子体减小能量损失的效果减弱;虽然电极沿整个叶高方向布置,但等离子体仅对约10%叶高以上的损失影响较为明显,同一电压下该范围内各叶高处的损失减小量也基本相同. 相似文献
15.
采用非定常数值方法对低雷诺数条件下50%,75%和100%三种不同轴向叠合量的轴向倾斜缝处理机匣结构对NASA Rotor 37跨声速压气机转子的扩稳效果进行了研究.结果表明,引入处理机匣后,附面层径向涡得到了很好的抑制,由附面层径向涡所引发的叶顶阻塞区大为减小,虽然又引发了由叶顶间隙涡对叶顶所造成的阻塞,但引入处理机匣后对压气机稳定性仍有较大的改善,能有效提高压气机转子的失速裕度. 相似文献
16.
将射流旋涡发生器引入到某折转角为60°的扩压叶栅端壁二次流控制中,研究了射流方向和射流总压对扩压叶栅气动性能及栅内流动的影响.结果表明:当射流旋涡发生器侧向倾角为0°时,仅采用不足扩压叶栅进口流量0.5%的射流流量,即可显著减少栅内损失.射流旋涡有效阻碍和推迟了通道涡发展,在下洗侧将主流流体卷入端壁附面层内,而在上洗侧将低能流体带入主流中,从而减少了角区低能流体聚积,减弱了吸力面的分离流动.当射流进口总压采用与扩压叶栅进口相同的总压时,总压损失减小21.5%,且射流进口总压越大,其控制效果越明显. 相似文献
17.
对某跨声速压气机转子在不同工作流量下的叶尖非定常流场进行了数值研究.结果显示:大流量状态下,该转子叶尖流场几乎不发生振荡.此时,叶尖流场可以按定常流场进行分析;小流量状态下,叶尖泄漏涡大幅振荡,相邻叶片通道内的叶尖泄漏流之间也存在周期性相互干涉.其结果是在稳定状态时出现由于叶尖泄漏涡的振荡及其周向传播造成的\"旋转不稳定\"现象.\"旋转不稳定\"流场结构主模态旋涡个数大约为40%的叶片通道个数;其周向尺度占据2~3个栅距. 相似文献
18.
采用分区网格处理方法并发展了基于分块结构的三维N-S方程流体求解器,用以模拟压气机间隙区域复杂的流动现象。以一压气机叶栅为研究对象,计算分析了端壁静止和端壁移动情况下叶栅内部的三维流场,并考虑了间隙大小的影响。通过详细分析叶栅通道内部及尾迹区域的流动并与已有的实验结果对比分析表明,程序较好地模拟出了移动壁效应对间隙区域二次流动形成和发展的影响。数值和实验结果均表明,端壁移动情况下间隙区域的二次流动特征是刮削泄漏涡的形成和发展。 相似文献
19.
提出了一种控制扩压叶栅叶顶间隙流动的方法,通过对叶尖压力面小尺度的倒圆修型,改善了扩压叶栅叶顶间隙流动状况。通过数值模拟方法研究叶尖倒圆结构对扩压叶栅性能的影响及作用机理,并探究3种不同倒圆半径(约为3%、4%、6%的叶片最大厚度)叶尖倒圆结构的流动控制效果。结果表明:叶尖倒圆能够削弱叶尖分离涡,进而影响叶尖流场不同涡系之间的相互作用,使得叶顶间隙通道附近的总压损失减少;但是叶尖倒圆半径越大,泄漏流流量越大,会加剧泄漏流与主流的掺混,使总压损失增加。因此合适的叶尖倒圆半径能够使叶栅性能得到最大程度的改善。此外,在倒圆半径为3%叶片最大厚度时,叶栅在较大的攻角范围内均获得了良好的改善损失的效果。 相似文献