首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
丛佩超  孙兆伟 《上海航天》2009,26(4):7-11,16
基于建立的空间机械臂系统的运动学与动力学模型,以及动量守恒关系,对空间机械臂抓取空间目标进行了分析。讨论了两关节机械臂4种碰撞力方向及其对应的机械臂系统耦合角动量、关节转角的变化,提出了直臂抓取方案。仿真结果表明:通过控制碰撞力方向可有效减少碰撞力对系统耦合角动量、关节转角的影响,进而避免混合体控制的关节与力矩限制。  相似文献   

2.
The purpose of this study was to determine whether applying foot pressure to unrestrained subjects during space flight could enhance the neuromuscular activation associated with rapid arm movements. Four men performed unilateral arm raises while wearing--or not wearing--specially designed boots during a 81- or 115-day space flight. Arm acceleration and surface EMG were obtained from selected lower limb and trunk muscles. Pearson r coefficients were used to evaluate similarity in phasic patterns between the two in-flight conditions. In-flight data also were magnitude normalized to the mean voltage value of the muscle activation waveforms obtained during the no-foot-pressure condition to facilitate comparison of activation amplitude between the two in-flight conditions. Foot pressure enhanced neuromuscular activation and somewhat modified the phasic features of the neuromuscular activation during the arm raises.  相似文献   

3.
Strategy for capturing of a tumbling space debris   总被引:5,自引:0,他引:5  
In general space debris objects do not possess much convenient features and are non-cooperative. In such cases, since the conditions for capture are not favorable, tracking errors will lead to loading, and momentum transfer will occur during the capture process.In most cases, detailed mass and inertial characteristics of the target are unknown, either because design details are unavailable or due to changes as a result of damage sustained when failure occurred or gradual degradation over the years, and this makes impedance matching of the capture arm force control system difficult.This led to us to devise a “joint virtual depth control” algorithm for robot arm control, which brakes the rotation of a target with unknown inertia. This paper deals with a removal work strategy and control method for capturing and braking a tumbling, non-cooperative target space debris.We propose a new brush type contactor as end-effecter of a robot arm for reducing the rotational rate of the target debris. As a means for relieving the loads generated during target tapping, in addition to joint compliance control we propose a new control method that controls the arm tip force according to a contact force profile.  相似文献   

4.
Adaptation to the weightless state and readaptation after space flight to the 1-G environment on the ground are accompanied by various transitory symptoms of vestibular instability, kinetosis, and illusory sensations. Aside from the problem of how to treat and if possible prevent such symptoms, they offer a clue to a better understanding of normal vestibular functions. Weightlessness is a powerful new "tool" of vestibular research. Graybiel reported as early as 1952 that human subjects observed the illusion that a real target and the visual afterimage seemed to raise in the visual field during centrifugation when the subjects were looking toward the axis of rotation (oculogravic illusion). In aircraft parabolic-flight weightlessness, human subjects observed that fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculoagravic illusion). It can be shown by electronystagmography as well as by a method employing double afterimages that part of this illusion is caused by eye movements that are triggered by the changing input from the otolith system. Another part of the illusion is based on a change of the subjective horizontal and must be caused by convergence of vestibular and visual impulses "behind" the eyes. This part was measured independently of the first one by using a new method. Eye movements could be prevented during these experiments by optical fixation with the right eye on a target at the end of a 24-in. long tube which was rigidly attached parallel to the longitudinal axis of an aircraft. At the same time the subject tried to line up a shorter tube, which was pivoting around his left eye, with the subjective horizon.  相似文献   

5.
Dubois K 《Acta Astronautica》1991,25(8-9):605-613
"Moderne dance" (as opposed to a more academic or classical dance form) uses techniques from kinesiology, anatomy and improvization which are adapted to a cultural, technological and political environment. The function of a choreographic system is to take and give a measure of the world. This includes, with the present tendency of the evolution of culture, a new "naturalism" which seeks the secrets of the body. Dance movements express in terms of space the dimension fo the infinite. It gives somehow the measure of a world within which everything is relative. Except for the speed of light, time and space are bound together by the same principle. The qualities of body awareness and specific motricity in dancers imply--besides a strict discipline--balance, coordination, muscular performance and perfect orientation, problems that astronauts also encounter in microgravity. Could chosen exercises used in modern dance technique be applied to the training of astronauts? Dancer-choreographer Kitsou Dubois has been working in this direction since 1988. She was granted a "Villa Medicis Hors Les Murs" by the French Ministry of Foreign Affairs, to carry on with her research at NASA, Houston, Tex. in April 1989. It allowed her to investigate the reality of this analogy. She intends to evaluate the dancers' subjective vertical refering to Mittelstaedt's observations on the proportional relationship between "space sickness" and some astronauts poor evaluation of the subjective vertical. This study should create a relationship between a choreographer's empirical intuition and a scientific reality.  相似文献   

6.
《Acta Astronautica》2007,60(4-7):281-284
The regional lung ventilation depends on the amount and direction of applied gravitational force. This article presents a technique suitable for microgravity condition, providing online information about the local dynamic behavior of the lungs. Using state-differential images measured by electrical impedance tomography (EIT), for every region of interest (ROI) of the lungs a median signal was calculated. For the detection of regional differences in the lung ventilation, local impedance signals were compared with a reference signal, which was the median value over all pixels inside the lungs.We compared both the difference in magnitude and the phase shifts between the ROIs. The phase information was calculated using the Hilbert transform. The technique was tested on five spontaneously breathing subjects.The phase difference proved to be a very sensitive indicator for changes in the regional ventilation during postural changes and therefore changes of the direction of gravitational forces.  相似文献   

7.
王振汉  张立勋  薛峰  陈旭阳 《宇航学报》2022,43(9):1268-1276
针对航天员微重力作业训练系统的重力场补偿控制这一关键技术,进行了理论和实验研究。分析了模拟微重力环境的机理,确定了微重力作业训练系统的总体结构方案,提出了一种基于电流反馈的重力补偿控制及多干扰力补偿控制策略。通过虚拟重力补偿控制实验,验证了在地面环境、动态作业过程中,模拟物体在不同空间重力加速度环境下的运动规律,实现了在重力方向模拟空间环境下物体移动的作业训练效果。研究成果为在地面实现三维作业训练系统的控制奠定了基础。  相似文献   

8.
Humans have mental representation of their environment based on sensory information and experience. A series of experiments has been designed to allow the identification of disturbances in the mental representation of three-dimensional space during space flight as a consequence of the absence of the gravitational frame of reference. This NASA/ESA-funded research effort includes motor tests complemented by psychophysics measurements, designed to distinguish the effects of cognitive versus perceptual-motor changes due to microgravity exposure. Preliminary results have been obtained during the microgravity phase of parabolic flight. These results indicate that the vertical height of handwritten characters and drawn objects is reduced in microgravity compared to normal gravity, suggesting that the mental representation of the height of objects and the environment change during short-term microgravity. Identifying lasting abnormalities in the mental representation of spatial cues will establish the scientific and technical foundation for development of preflight and in-flight training and rehabilitative schemes, enhancing astronaut performance of perceptual-motor tasks, for example, interaction with robotic systems during exploration-class missions.  相似文献   

9.
杜耀珂  何益康 《上海航天》2012,29(3):18-22,72
针对干涉合成孔径雷达(InSAR)编队卫星的特点,分析了地球形状、大气阻力、第三体引力和太阳光压等空间摄动力对卫星轨道的影响,并仿真讨论其对编队构型的影响。结果表明:地球形状摄动和大气阻力摄动是引起InSAR编队构型变化的主要摄动因素,在这些摄动力的作用下,编队构型的变化主要是沿航迹向的累积变化和编队椭圆的空间指向变化两种,并给出了编队构型随时间的变化量。研究为编队保持控制提供了参考。  相似文献   

10.
The control of the body orientation and the center of mass position with respect to the feet was investigated under normo- and microgravity (space flight Altair), during erect posture and at the end of a forward or backward upper trunk movement.

It was observed that during erect posture, the trunk orientation with respect to the vertical was inclined some 6 ° forward in both subjects under microgravity, whereas it was vertical or slightly backward oriented under normogravity. Under microgravity, on the contrary, the initial position CM changed either backwards or forwards. This result suggests that the inclined trunk posture might be due to misevaluating the vertically under microgravity and that different control mechanisms are involved in orienting the trunk and placing the CM.

It was also noted that the final position of the CM at the end of the movement did not differ markedly between microgravity and normogravity. This result suggests that the kinematic synergies which stabilize the CM during uppertrunk movements may result from an automatic central control which is independent from the gravity constraints.  相似文献   


11.
Experimental studies of visual mechanisms suggests that the CNS represents image information with respect to preferred horizontal and vertical axes, as shown by a phenomenon known as the "oblique effect". In the current study we used this effect to evaluate the influence of gravity on the representation and storage of visual orientation information. Subjects performed a psychophysical task in which a visually-presented stimulus line was aligned with the remembered orientation of a reference stimulus line presented moments before. The experiments were made on 5 cosmonauts during orbital space flight and additionally on 13 subjects in conditions of normal gravity with a tilting chair. Data were analyzed with respect to response variability and timing. On earth, these measurements for this task show a distinct preference for horizontally and vertically oriented stimuli when the body and gravitational axes were aligned. This preference was markedly decreased or disappeared when the body axis was tilted with respect to gravity; this effect was not connected with ocular counter-rolling nor could we find a preference of any other intermediate axis between the gravity and body aligned axes. On the other hand, the preference for vertical and horizontal axes was maintained for tests performed in microgravity over the course of a 6 month flight, starting from flight day 6. We concluded that subjects normally process visual orientation information in a multi-modal reference frame that combines both proprioceptive and gravitational cues when both are available, but that a proprioceptive reference frame is sufficient for this task in the absence of gravity after a short period of adaptation. Some of the results from this study have been previously published in a preliminary report. Grant numbers: 99-04-48450.  相似文献   

12.
刘磊  张涛 《宇航学报》2022,43(12):1629-1637
针对空间中双臂协调转位过程中面临的双臂异构、刚度不同、负载较大、测量/执行误差影响大、抓捕位置随机偏差等问题,提出了一种空间大质量目标转位操作双臂协调控制方法。首先基于双臂转位的几何约束,进行协调转位运动规划。然后,将双机械臂关节划分为主动关节和从动关节,并对主动关节设计关节位置控制器,对从动关节设计零力控制器,从动关节在转位目标的拖动力下进行跟随运动。最后,数学仿真表明了所提出的双臂协调转位方法的有效性。  相似文献   

13.
The identification of trajectories that target a precise location and approach vector during planetary entry is sensitive to the quality of the startup arc supplied to iterative path planning and guidance algorithms. These sensitivities are especially evident when multi-body effects are significant; low-energy spacecraft trajectories that dwell near the gravitational boundary of two bodies, for instance, are more susceptible to third-body effects. Dynamical sensitivities are also significant when maneuvers are scheduled within a region of space susceptible to multi-body effects. The present study considers precision entry targeting from the perspective of the multi-body problem.  相似文献   

14.
Anken RH  Rahmann H 《Acta Astronautica》1998,42(1-8):431-454
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on an irregular dislocation of the inner ear otoliths from the corresponding sensory epithelia. This dislocation leads to an illusionary tilt, since the otolithic inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in the orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS). During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses--particularly of fish--observed at altered gravitational states, concerning behaviour and neuroplastic reactivities.  相似文献   

15.
The new approach to gravitation effect determination in calculating the flux of sporadic micrometeoroids in the near-Earth space is proposed. The technique is based on integration of the equations of motion of sporadic micrometeoroids with accounting for bending their trajectories when particles are approaching the Earth. The technique and results of calculation of the gravitational focusing factor kg for various conditions are presented. The feature of the proposed technique for calculating coefficient kg consists in the fact that this coefficient does not explicitly depend on the values of particles velocity at the last point. The results of investigation of coefficient kg have shown that, for the given initial velocity of micrometeoroids, the values of this coefficient depend on deflection of its direction from the direction to the Earth center. It is shown that for low-altitude orbits the flux density can increase up to 60%. The distribution of probabilities of various directions of particles flying to spacecraft structural elements is found to be non-uniform.  相似文献   

16.
The hypotheses tested were whether variations in central venous pressure via the low pressure baroreceptors would take over or modify the arterial baroreceptor function, and further to which extent local and "whole body" hydrostatic stresses influence blood flow distribution. We investigated total forearm and skin blood flow (venous occlusion plethysmography and 133-Xe clearance) and cardiac output (rebreathing method) among other parameters. Hypo- and hyper-gravitational stresses were simulated by LBNP, LBPP, water immersion and lowering of the arm. The changes in flow distribution in the arm were ascribed to arterial baroreceptor function and not to low pressure baroreceptor activity. The enhancement of venous return during water immersion increased exercise tolerance during heat stress presumably due both to increased stroke volume and decreased venous pooling. The response to sustained handgrip exercise during LBNP and LBPP was not different from control measurements and the effects explained by arterial baroreceptor function. Application of exercise and local hydrostatic stresses in combination with gravitational stresses represent an interesting model for further study of the mechanisms behind the distribution of cardiac output to the peripheral organs.  相似文献   

17.
Quasi-static microaccelerations are estimated for a satellite specially designed to perform space experiments in the field of microgravity. Three modes of attitude motion of the spacecraft are considered: passive gravitational orientation, orbital orientation, and semi-passive gravitational orientation. In these modes the lengthwise axis of the satellite is directed along the local vertical, while solar arrays lie in the orbit plane. The second and third modes are maintained using electromechanical executive devices: flywheel engines or gyrodynes. Estimations of residual microaccelerations are performed with the help of mathematical modeling of satellite’s attitude motion under the action of gravitational and aerodynamic moments, as well as the moment produced by the gyro system. It is demonstrated that all modes ensure rather low level of quasi-static microaccelerations on the satellite and provide for a fairly narrow region of variation for the vector of residual microacceleration. The semi-passive gravitational orientation ensures also a limited proper angular momentum of the gyro system.  相似文献   

18.
Significant changes of thermogomeostatic parameters was obtained by thermotopometric method using the techniques simulate of microgravity effects: bed rest, pressurized isolation, suit immersion (SI). However, each of ground models made rectal temperature (T) trend downward. The autothermometric study (24 and 12 sessions, 2-13th and 6-174th flight days) was carried out onboard "Mir" by two flight engineers who had preliminary tested at SI (1-2 days). Studies of German investigators onboard "Mir" confirmed: rectal T must be higher in space flight as compared to the normal environment (n=4). Comparative studies suggest that microgravity is a key factor for the human body surface T raise and abolishment of the external/internal T-gradient. T-homeostasis was not really changing during missions and could be regarded as acute effect of microgravity. After delineation of changes in body surface T--by Carnot's thermodynamic law--rectal T raise should have been anticipated. Facts pointing to the excess entropy of human body must not be passed over.  相似文献   

19.
臂状张拉整体结构转化为张拉整体伸展臂的方案被分析研究。首先,构建臂状张拉整体结构的数学模型。而后,基于臂状张拉整体结构,通过受力变形分析,获得了此结构在轴向外载作用下,其整体高度、截面直径和构件长度变化规律。依据分析结果,研究驱动此结构折叠的方案和索构件弹性化方案。利用仿真分析和模型实验,对所获得的机构方案的可行性和合理性进行了分析验证。通过研究得到:将多层张拉整体斜索和鞍索柔性化,驱动附加索更容易实现折展;张拉整体层数增多时,驱动附加索可减小控制难度;多层张拉整体占用空间主要受高度影响。通过分析,获得了一种可行的张拉整体伸展臂设计方案。研究中应用的由折叠方式推导展开方案的分析思路也能够为张拉整体结构的机构化研究提供借鉴。  相似文献   

20.
刘福才  曹志琼  张晓  李倩 《宇航学报》2020,41(11):1456-1465
为了分析空间机构在不同重力环境中的驱动力差异,以单关节机械臂为研究对象,进行不同重力环境下直流电机驱动力差异分析。首先基于拉格朗日方程推导出单关节机械臂的动力学模型,为分析不同重力环境下,负载、摩擦和转速的变化对电机驱动力的影响,通过设计一套基于单关节驱动的机械臂试验装置,进行地面重力环境、地面模拟微重力环境和落塔微重力环境试验。然后基于试验数据详细分析了不同重力环境下空间机构电机驱动电流的差异,并基于试验数据对电机动力学方程中的摩擦参数进行辨识,从而获得基于试验数据修正的机械臂动力学仿真模型,为空间机构动力学设计与应用提供理论与试验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号