首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a global system of the magnetic field and current from the interaction of the solar wind plasma and the interstellar medium is modeled using a 3-D MHD simulation. The terminal shock, the heliopause and the outer shock are clearly determined in our simulation. In the heliosheath the toroidal magnetic field is found to increase with the distance from the sun. The magnetic field increases rapidly in the upstream region of the heliosheath and becomes maximum between the terminal shock and the heliopause. Hence a shell-type magnetic wall is found to be formed in the heliosheath. Because of this magnetic wall the radially expanding solar wind plasma changes its direction tailward in all latitudes except the equatorial region. Only the equatorial disk-like plasma flow is found to extend to the heliopause through the weak magnetic-field region around the equator. Two kinds of global current loops which sustain the toroidal magnetic field in the heliosphere are found in our simulation.The influence of the 11-year solar cycle variation of the magnetic polarity is also examined. It is found that the polarity of the toroidal magnetic field in the heliosheath switches at every solar cycle change. Hence the heliosheath is found to consist of such magnetized plasma bubbles. The neutral sheets are found to extend between such magnetized plasma bubbles in the 3-D heliosheath in a complicated form. The magnetic-pressure effect on the heliosheath plasma structure is also examined.  相似文献   

2.
Corotating interaction regions are a consequence of spatial variability in the coronal expansion and solar rotation, which cause solar wind flows of different speeds to become radially aligned. Compressive interaction regions are produced where high-speed wind runs into slower plasma ahead. When the flow pattern emanating from the Sun is roughly time-stationary these compression regions form spirals in the solar equatorial plane that corotate with the Sun, hence the name corotating interaction regions, or CIRs. The leading edge of a CIR is a forward pressure wave that propagates into the slower plasma ahead, while the trailing edge is a reverse pressure wave that propagates back into the trailing high-speed flow. At large heliocentric distances the pressure waves bounding a CIR commonly steepen into forward and reverse shocks. Spatial variation in the solar wind outflow from the Sun is a consequence of the solar magnetic field, which modulates the coronal expansion. Because the magnetic equator of the Sun is commonly both warped and tilted with respect to the heliographic equator, CIRs commonly have substantial north-south tilts that are opposed in the northern and southern hemispheres. Thus, with increasing heliocentric distance the forward waves in both hemispheres propagate toward and eventually across the solar equatorial plane, while the reverse shocks propagate poleward to higher latitudes. This paper provides an overview of observations and numerical models that describe the physical origin and radial evolution of these complex three-dimensional (3-D) heliospheric structures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Current knowledge about the solar radiation and absorption and ionization cross sections of atmospheric gases is reviewed. Next the main observed features of ionospheric layers are summarized. Using CIRA 1965 model atmospheres the heights of the peak of the ionization rate are calculated for a number of solar emission lines and it is made clear which of these lines are responsible for the formation of E and F1 layers. The mechanism of electron removal in the F and upper E regions as well as in the lower regions is considered, and the mechanism of formation and some behaviours of each ionospheric layer is discussed. In particular, the equatorial F2 layer is briefly considered. Discrepancies are pointed out between the values of the recombination coefficient and the rate constant for ion-atom interchange reaction obtained from ionospheric observations and from laboratory experiments. Inconsistency of the values of the intensity of solar radiation measured by rocket techniques and inferred from ionospheric considerations is also noted. Some evidence is presented suggesting that corpuscular radiation may be responsible for part of the ionization in the ionosphere even in temperate latitudes.  相似文献   

4.
The atmospheric dynamo theory of the daily magnetic variations (S) has received substantial support from recent observational and theoretical work. In particular, several features of the variations, such as their remarkable enhancement close to the dip equator and other effects indicating a strong control by the main geomagnetic field, are well explained by the dynamo theory. Also the detection of ionospheric currents by instrumental rockets has confirmed an essential part of the theory.Considerable impetus was given to their study by the acquirement of much new data on magnetic variations during the IGY-IQSY period. Additional observations in the Pacific area were obtained during the IQSY by the establishment of four island stations equipped with newly developed magnetometers. A major advance at other stations was the development of automatic standard observatories using nuclear magnetometers.Several methods for the world-wide analysis of the S-field have been developed. A possibility now being studied is the completely automatic evaluation and construction by computers of ionospheric current charts for any day and any epoch UT.Some theoretical and statistical papers are briefly reviewed. These include discussions of the day-to-day variability of S, seasonal changes of the S-field, the nature of the equatorial electrojet, the possibility of solar wind effects contributing to the daily variations, and the modification of the dynamo theory to take account of the possible flow of electric current from the ionosphere along magnetic lines of force in the magnetosphere.Finally, an attempt to extend the dynamo theory of S by treating the ionosphere as a three-dimensional medium, instead of regarding it as a thin shell, has revealed that, although the relations between the horizontal components of electric field and current density in the dynamo layer are given with reasonable accuracy by the well-known layer equations, the assumption, implicit in the thin shell treatment, that the horizontal currents are non-divergent is not in fact true. Hence a revision of some earlier theoretical work on S appears necessary.  相似文献   

5.
The theoretical framework and experimental methodology used to interpret observations of ionospheric scintillations in terms of geophysical processes are reviewed and recent experimental observations of ionospheric scintillations are discussed in this paper. During the past 15 years significant progress has been made in several areas. In particular, significant advances have been made in theoretical understanding of the strong scintillation regime and the effects of short-term temporal variations of the scintillation producing irregularities on observations made with spaced-receiver geometries in both weak and strong scintillations. This improved understanding of the scintillation process has significantly increased the utility of the technique particularly in the equatorial latitudes where geometrical effects are least important.  相似文献   

6.
We present a review of the current state of understanding regarding two classes of irregularities causing mesoscale structuring (hundreds of kilometers) in the nighttime ionosphere at low- and mid-latitudes. Additionally, current state of understanding of equatorial plasma bubbles at low latitudes, and medium-scale traveling ionospheric disturbances at mid latitudes and their relationship to possible seeding from lower altitudes are described. In each case, well-developed linear theories exist to explain the general properties of the irregularities. However, these linear theories have growth rates too low to explain the actual observations, giving rise to the need to invoke seeding mechanisms. We describe the observational databases that have been compiled over the decades and discuss possible coupling and seeding mechanisms that would overcome the low growth rate and explain the observed structuring at the mesoscale. Future research directions are also briefly discussed.  相似文献   

7.
Determining the morphology of F-layer irregularities as a function of longitude in the equatorial region is vital for understanding the physics of the development of these irregularities. We aim to lay the observational basis which then can be used to test theoretical models. Theoretical models have been developed, notably in the papers by Tsunoda (1985) and by T. Maruyama and N. Matuura (1984). The question is whether the models are consistent with the morphology as we see it.According to our criteria, the data used should be confined to observations taken near the magnetic equator during quiet magnetic periods and at times within a few hours after sunset. Anomaly region scintillation data have to be used in a limited manner for studying the generation mechanism.The questions to be answered by proposed mechanisms are (1) why do the equinox months have high levels of occurrence over all longitudes and (2) why are there relatively high levels of occurrence in the Central Pacific Sector in the July–August period and in the 0–75° West Sector in the November-December period and (3) why are there very low levels of occurrence in November and December in the Central Pacific Sector and in July and August in the 0–75° West Sector.In the paper by Maruyama and Matuura, the authors have taken observations of topside soundings of spread-F. With this data set in hand, they conclude: During the northern winter periods, there is maximum enhancement at the Atlantic longitudes of large westward geomagnetic declination and during the northern summer at the Pacific longitude of large eastward declination.Tsunoda's conclusions from his use of scintillation data is that scintillation activity appears to maximize at times of the year when the suset nodes occur. The emphasis of one paper is on the maximum enhancement during the solstices and in the other paper on variations from the equinox as determined by latitude and declination. Each stresses certain characteristics of the morphology. While the two papers explain relatively different morphologies, each makes contributions. However there remain problems to be resolved before certifying a solution as to the physics explaining the longitudinal pattern of F-region irregularities.Satellitein-situ data, scintillation and spread-F observations will be reviewed. The limitation of each data set will be outlined particularly as relevant to the bias produced by the existence of thin versus extended layers of irregularities. A cartoon as to the occurrence pattern, as we see it, as a function of longitude will be shown.  相似文献   

8.
9.
A total of about of 400 orbits during the first year of the ASPERA-3 operation onboard the Mars Express spacecraft were analyzed to obtain a statistical pattern of the main plasma domains in the Martian space environment. The environment is controlled by the direct interaction between the solar wind and the planetary exosphere/ionosphere which results in the formation of the magnetospheric cavity. Ionospheric plasma was traced by the characteristic “spectral lines” of photoelectrons that make it possible to detect an ionospheric component even far from the planet. Plasma of solar wind and planetary origin was distinguished by the ion mass spectrometry. Several different regions, namely, boundary layer/mantle, plasma sheet, region with ionospheric photoelectrons, ray-like structures near the wake boundary were identified. Upstream parameters like solar wind ram pressure and the direction of the interplanetary electric field were inferred as proxy from the Mars Global Surveyor magnetic field data at a reference point of the magnetic pile up region in the northern dayside hemisphere. It is shown that morphology and dynamics of the main plasma domains and their boundaries are governed by these factors as well as by local crustal magnetizations which add complexity and variability to the plasma and magnetic field environment.  相似文献   

10.
The low latitude ionosphere is strongly affected by several highly variable electrodynamic processes. Over the last two decades ground-based and satellite measurements and global numerical models have been extensively used to study the longitude-dependent climatology of low latitude electric fields and currents. These electrodynamic processes and their ionospheric effects exhibit large ranges of temporal and spatial variations during both geomagnetic quiet and disturbed conditions. Numerous recent studies have investigated the short term response of equatorial electric fields and currents to lower atmospheric transport processes and solar wind-magnetosphere driving mechanisms. This includes the large electric field and current perturbations associated with arctic sudden stratospheric warming events during geomagnetic quiet times and highly variable storm time prompt penetration and ionospheric disturbance dynamo effects. In this review, we initially describe recent experimental and numerical modeling results of the global climatology and short term variability of quiet time low latitude electrodynamic plasma drifts. Then, we examine the present understanding of equatorial electric field and current perturbation fields during periods of enhanced geomagnetic activity.  相似文献   

11.
Our picture of modulation in the inner heliosphere has been greatly affected by observations from the Ulysses mission, which since 1992 has provided the first comprehensive exploration of modulation as a function of latitude from 80° S to 80° N heliographic latitude. Among the principal findings for the inner heliosphere are: a) the cosmic ray intensity depends only weakly on heliographic latitude; b) for the nuclear components, and especially for the anomalous components, the intensity increases towards the poles, qualitatively consistent with predictions of drift models for the current sign of the solar magnetic dipole; c) no change in the level of modulation was observed across the shear layer separating fast polar from slow equatorial solar wind near 1 AU; d) 26-day recurrent variations in the intensity persist to the highest latitudes, even in the absence of clearly correlated signatures in the solar wind and magnetic field; e) the surface of symmetry of the modulation in 1994-95 was offset about 10° south of the heliographic equator; f) the intensity of electrons and of low energy (< 100 MeV) protons showed essentially no dependence on heliographic latitude.  相似文献   

12.
The Ulysses mission has provided the first in-situ observations of the solar wind covering all solar latitudes from the equator to the poles in both hemispheres. The measurements from the first polar passes, made at near-minimum solar activity conditions, have confirmed the basic picture established on the basis of remote sensing techniques: the high-latitude wind is fast, and originates in the polar coronal holes. The detailed in-situ observations have, however, revealed a number of features related to the global solar wind structure that were not expected: the transition between slow and fast wind was relatively abrupt, followed by a slight increase in speed toward the poles; the mass flux is almost independent of latitude, with only a modest increase at the equator; the momentum flux is significantly higher over the poles than near the equator, suggesting a non-circular cross-section for the flanks of the heliosphere.  相似文献   

13.
At solar maximum, the large-scale structure of the heliospheric magnetic field (HMF) reflects the complexity of the Sun's coronal magnetic fields. The corona is characterised by mostly closed magnetic structures and short-lived, small coronal holes. The axis of the Sun's dipole field is close to the solar equator; there are also important contributions from the higher order terms. This complex and variable coronal magnetic configuration leads to a much increased variability in the HMF on all time scales, at all latitudes. The transition from solar minimum to solar maximum conditions, as reflected in the HMF, is described, as observed by Ulysses during its passage to high southern heliolatitudes. The magnetic signatures associated with the interaction regions generated by short-lived fast solar wind streams are presented, together with the highly disordered period in mid-1999 when there was a considerable reorganisation in coronal structures. The magnetic sector structure at high heliolatitudes shows, from mid-1999, a recognisable two-sector structure, corresponding to a highly inclined Heliospheric Current Sheet. A preliminary investigation of the radial component of the magnetic field indicates that it remains, on average, constant as a function of heliolatitude. Intervals of highly Alfvénic fluctuations in the rarefaction regions trailing the interaction regions have been, even if intermittently, identified even close to solar maximum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Erdos  Géza  Balogh  André  Kóta  József 《Space Science Reviews》2001,97(1-4):221-224
We study the solar cycle, radial, and latitudinal dependence of the characteristics of magnetic field irregularities in the Heliosphere. The frequency of magnetic field discontinuities is determined, using high time resolution magnetic field observations by Ulysses, covering the time interval from 1992 to 2000. The quasi-linear scattering mean free path of particles is also calculated. These investigations aim at understanding/exploring transport properties of energetic charged particles in the Heliosphere. We find that the travel time of solar wind plasma from the Sun to the observer is the key parameter of the process, by controling the decay of the irregularities. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
This chapter reviews the current understanding of ring current dynamics. The terrestrial ring current is an electric current flowing toroidally around the Earth, centered at the equatorial plane and at altitudes of ∼10,000 to 60,000 km. Enhancements in this current are responsible for global decreases in the Earth’s surface magnetic field, which have been used to define geomagnetic storms. Intense geospace magnetic storms have severe effects on technological systems, such as disturbances or even permanent damage of telecommunication and navigation satellites, telecommunication cables, and power grids. The main carriers of the ring current are positive ions, with energies from ∼1 keV to a few hundred keV, which are trapped by the geomagnetic field and undergo an azimuthal drift. The ring current is formed by the injection of ions originating in the solar wind and the terrestrial ionosphere into the inner magnetosphere. The injection process involves electric fields, associated with enhanced magnetospheric convection and/or magnetospheric substorms. The quiescent ring current is carried mainly by protons of predominantly solar wind origin, while active processes in geospace tend to increase the abundance (both absolute and relative) of O+ ions, which are of ionospheric origin. During intense geospace magnetic storms, the O+ abundance increases dramatically. This increase has been observed to occur concurrently with the rapid intensification of the ring current in the storm main phase and to result in O+ dominance around storm maximum. This compositional change can affect several dynamic processes, such as species-and energy-dependent charge-exchange and wave-particle scattering loss.  相似文献   

16.
There are several external sources of ionospheric forcing, including these are solar wind-magnetospheric processes and lower atmospheric winds and waves. In this work we review the observed ion-neutral coupling effects at equatorial and low latitudes during large meteorological events called sudden stratospheric warming (SSW). Research in this direction has been accelerated in recent years mainly due to: (1) extensive observing campaigns, and (2) solar minimum conditions. The former has been instrumental to capture the events before, during, and after the peak SSW temperatures and wind perturbations. The latter has permitted a reduced forcing contribution from solar wind-magnetospheric processes. The main ionospheric effects are clearly observed in the zonal electric fields (or vertical E×B drifts), total electron content, and electron and neutral densities. We include results from different ground- and satellite-based observations, covering different longitudes and years. We also present and discuss the modeling efforts that support most of the observations. Given that SSW can be forecasted with a few days in advance, there is potential for using the connection with the ionosphere for forecasting the occurrence and evolution of electrodynamic perturbations at low latitudes, and sometimes also mid latitudes, during arctic winter warmings.  相似文献   

17.
Spacecraft observations have established that all known planets with an internal magnetic field, as part of their interaction with the solar wind, possess well-developed magnetic tails, stretching vast distances on the nightside of the planets. In this review paper we focus on the magnetotails of Mercury, Earth, Jupiter and Saturn, four planets which possess well-developed tails and which have been visited by several spacecraft over the years. The fundamental physical processes of reconnection, convection, and charged particle acceleration are common to the magnetic tails of Mercury, Earth, Jupiter and Saturn. The great differences in solar wind conditions, planetary rotation rates, internal plasma sources, ionospheric properties, and physical dimensions from Mercury’s small magnetosphere to the giant magnetospheres of Jupiter and Saturn provide an outstanding opportunity to extend our understanding of the influence of such factors on basic processes. In this review article, we study the four planetary environments of Mercury, Earth, Jupiter and Saturn, comparing their common features and contrasting their unique dynamics.  相似文献   

18.
The Sun in Time   总被引:1,自引:0,他引:1  
The Sun varies in time over at least twenty orders of magnitude. In this highly selective look at a vast subject, the focus is on solar variations related to the magnetic field structure of the heliosphere since these changes affect the propagation of cosmic rays in the heliosphere. The root of the changes is the magnetic field pattern near the solar surface. Some key aspects of the behavior of this pattern are reviewed. Recent solar activity has been unlike any experienced in living memory and several of the observed oddities are noted. Included here is a first attempt to directly compare three decades of magnetic field measurements in coronal holes with the heliospheric magnetic field at 1 AU. Results support the idea that nearly all the open magnetic flux from the Sun originates in coronal holes (including those close to active regions).  相似文献   

19.
Fuselier  S.A.  Mende  S.B.  Moore  T.E.  Frey  H.U.  Petrinec  S.M.  Claflin  E.S.  Collier  M.R. 《Space Science Reviews》2003,109(1-4):285-312
One of the IMAGE mission science goals is to understand the dayside auroral oval and its dynamic relationship to the magnetosphere. Two ways the auroral oval is dynamically coupled to the magnetosphere are through the injection of magnetosheath plasma into the magnetospheric cusps and through the ejection of ionospheric plasma into the magnetosphere. The ionospheric footpoints of the Earth's magnetospheric cusps are relatively narrow regions in invariant latitude that map magnetically to the magnetopause. Monitoring the cusp reveals two important aspects of magnetic reconnection at the magnetopause. Continuous cusp observations reveal the relative contributions of quasi-steady versus impulsive reconnection to the overall transfer of mass, energy, and momentum across the magnetopause. The location of the cusp is used to determine where magnetic reconnection is occurring on the magnetopause. Of particular interest is the distinction between anti-parallel reconnection, where the magnetosheath and magnetospheric field lines are strictly anti-parallel, and component merging, where the magnetosheath and magnetospheric field lines have one component that is anti-parallel. IMAGE observations suggest that quasi-steady, anti-parallel reconnection is occurring in regions at the dayside magnetopause. However, it is difficult to rule out additional component reconnection using these observations. The ionospheric footpoint of the cusp is also a region of relatively intense ionospheric outflow. Since outflow also occurs in other regions of the auroral oval, one of the long-standing problems has been to determine the relative contributions of the cusp/cleft and the rest of the auroral oval to the overall ionospheric ion content in the Earth's magnetosphere. While the nature of ionospheric outflow has made it difficult to resolve this long-standing problem, the new neutral atom images from IMAGE have provided important evidence that ionospheric outflow is strongly controlled by solar wind input, is `prompt' in response to changes in the solar wind, and may have very narrow and distinct pitch angle structures and charge exchange altitudes.  相似文献   

20.
In this paper some theories and experimental data on the electric fields and currents in the ionosphere are reviewed. Electric fields originating in the polarization of the ionosphere as well as in local irregularities are considered. Special attention is paid to field-aligned currents as a regulator of the intensity and configuration of the ionospheric polarization field, the anomalous resistivity being one of the most important characteristics of the magnetospheric plasma. Present-day models of the magnetosphere and corresponding electric field generation mechanisms are discussed. Various models of the DP1 current system are considered and the main characteristics that allow us to distinguish between them are listed. Experimental data on the ionospheric electric field are considered; a modified model of Silsbee and Vestine is shown to fit these data reasonably well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号