首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modern state of gamma-ray astronomy is reviewed, the paper being mainly devoted to the theoretical models that describe generation of gamma-ray emission under astrophysical conditions. Basic information on the processes of generation and absorption of gamma-rays, as well as the results of observations for various gamma-ray photon energies are reported.In the region of soft gamma-ray emission (i.e., for energies less than tens of MeV), where emission in gamma-ray lines dominates, we also discuss the nature of gamma-ray bursts, the origin of gamma-ray emission from the galactic centre, etc.Discrete sources and, in particular, the mysterious source Cyg X-3 are discussed in the region of very high (E > 1012 eV) and ultra-high (E > 1015 eV) energy gamma-ray emission.A larger portion of the review is devoted to the analysis of cosmic-ray origin on the basis of the available gamma-ray data in the region from several tens of MeV to several GeV. The peculiarity of this energy range is, in particular, in the fact that the diffuse galactic emission was observed mainly there. We also discuss the problem of determination of the cosmic-ray density gradient from the gamma-ray data.The origin of high-latitude gamma-ray emission, the problem of galactic gamma-ray halo, etc., are discussed.The theoretical models explaining the nature of unidentified gamma-ray sources, as well as the results of measurements and theoretical estimations of a gamma-ray flux from SN1987A are analysed.List of Notations m electron mass, m = 9.108 × 10–28 g, - M proton mass, M = 1.672 × 10–24 g, - e electron charge, e = 4.803 × 10–10 CGS - c velocity of light, c = 2.9979 × 1010 cm s–1, - k Boltzmann constant, k = 1.380 × 10–16 erg grad–1, - e electron - p proton - gamma-ray photon - p antiproton - 0 0-meson - -lepton - e + positron - r, , x radio-frequency, gamma-ray, and X-ray emission bands - E total energy of a particle - E k kinetic energy - p particle momentum - spectral index for particles - spectral index for emission - n particle density (concentration) - H magnetic field strength - T temperature - ph energy of low-energy photons - emission frequency - r H Larmor radius of relativistic particles - k wave number - , z cylindric coordinates, in this case the coordinate (radius) along the galactic disk, z perpendicular to the galactic disk - M solar mass, M = 1.99 × 1033 g.  相似文献   

2.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   

3.
High energy -rays from individual giant molecular clouds contain unique information about the hidden sites of acceleration of galactic cosmic rays, and provide a feasible method for study of propagation of cosmic rays in the galactic disk on scales 100 pc. I discuss the spectral features of 0-decay -radiation from clouds/targets located in proximity of relatively young proton accelerators, and speculate that such `accelerator+target systems in our Galaxy can be responsible for a subset of unidentified EGRET sources. Also, I argue that the recent observations of high energy -rays from the Orion complex contain evidence that the level of the `sea of galactic cosmic rays may differ significantly from the flux and the spectrum of local (directly detected) particles.  相似文献   

4.
Thanks to remarkable new tools, such as the Goddard High Resolution Spectrograph (GHRS) on board the HST and the EUVE spectrometer on the interstellar side, and Ulysses particle detectors on the heliospheric side, it is possible now to begin to compare abundances and physical properties of the interstellar matter outside the heliosphere (from absorption features in the stellar spectra), and inside the heliosphere (from in situ or remote detection of the interstellar neutrals or their derivatives, the pick-up ions or the Anomalous Cosmic Rays detected by the two Voyager spacecraft).Ground-based and UV spectra of nearby stars show that the Sun is located between two volumes of gas of different heliocentric velocities V and temperatures T (see also Linsky et al, this issue). One of these clouds has the same velocity (V= 25.6 km s–1 from = 255 and =8) and temperature (6700 K) as the heliospheric helium of interstellar origin probed by Ulysses, and is certainly surrounding our star (and then the Local Interstellar Cloud or LIC). This Identification allows comparisons between interstellar constituents on both sides of the heliospheric interface.Ly-alpha background data (absorption cell and recent HST-GHRS spectra) suggest that the heliospheric neutral H velocity is smaller by 5–6 km s–1 than the local cloud velocity, and therefore that H is decelerated at its entrance into the heliosphere, in agreement with interaction models between the heliosphere and the ISM which include the coupling with the plasma. This is in favor of a non negligible electron density (at least 0.05 cm3). There are other indications of a rather large ionization of the ambient ISM, such as the ionization equilibrium of interstellar magnesium and of sodium. However the resulting range for the plasma density is still broad.The heliospheric neutral hydrogen number density (0.08–0.16 cm–3) is now less precisely determined than the helium density (0.013–0.017 cm–3, see Gloeckler, Witte et al, Mobius, this issue). The comparison between the neutral hydrogen to neutral helium ratios in the ISM (recent EUVE findings) and in the heliosphere, suggests that 15 to 70% of H does not enter the heliosphere. The comparison between the interstellar oxygen relative abundance (with respect to H and He) in the ISM and the heliospheric abundance deduced from pick-up ions is also in favor of some filtration, and thus of a non-negligible ionization.For a significant ISM plasma density, one expects a Hydrogen wall to be present as an intermediate state of the interstellar H around the interface between inside and outside. Since 1993, the two UVS instruments on board Voyager 1 and 2 indeed reveal clearly the existence of an additional Ly-alpha emission, probably due to a combination of light from the compressed H wall, and from a galactic source. On the other hand, the decelerated and heated neutral hydrogen of this H wall has recently been detected in absorption in the spectra of nearby stars (see Linsky, this issue).  相似文献   

5.
This review focuses on the conditions for -ray line production in the most interesting astronomical objects, in light of the planned experiments: Gamma-1, GRO, Sigma, GRASP, and others. Among these objects are the Sun, the galactic center region, molecular and dust clouds, accreting and exploding stars.  相似文献   

6.
Cosmic-ray acceleration and transport is considered from the point of view of application to diffuse galactic -ray sources. As an introduction we review several source models, in particular supernovae exploding inside or near large interstellar clouds. The complex problem of cosmic ray transport in random electromagnetic fields is reduced to three cases which should be sufficient for practical purposes. As far as diffusive acceleration is concerned, apart from reviewing the basic physical principles, we point out the relation between shock acceleration and 2nd order Fermi acceleration, and the relative importance of the two processes around interstellar shock waves. For -ray source models the interaction of cosmic rays with dense clouds assumes great importance. Past discussions had been confined to static interactions of clouds with the ambient medium in the sense that no large scale mass motions in the ambient interstellar medium were considered. The well-known result then is that down to some tens of MeV or less, cosmic-ray nucleons should freely penetrate molecular clouds of typical masses and sizes. The self-exclusion of very low energy nucleons however may affect electron transport with consequences for the Bremsstrahlung -luminosity of such clouds.In this paper we consider also the dynamical interaction of dense clouds with a surrounding hot interstellar medium. Through cloud evaporation and accretion there exist mass flows in the cloud surroundings. We argue that in the case of (small) cloud evaporation the galactic cosmic rays will be essentially excluded from the clouds. The dynamic effects of cosmic rays on the flow should be minor in this case. For the opposite case of gas accretion onto (large) clouds, cosmic-ray effects on the flow will in general be large, limiting the cosmic-ray compression inside the cloud to dynamic pressure equilibrium. This should have a number of interesting and new consequences for -ray astronomy. A first, qualitative discussion is given in the last section.Proceedings of the XVIII General Assembly of the IAU: Galactic Astrophysics and Gamma-Ray Astronomy, held at Patras, Greece, 19 August 1982.  相似文献   

7.
《Space Science Reviews》1989,49(1-2):111-124
The telescope Gamma-1 is designed to investigate cosmic gamma rays in the energy range from 50 MeV to 5000 MeV. The geometrical sensitive area of the telescope amounts to 1500 cm2, the angular resolution in each direction is equal to 1.2° at the energy 300 MeV and is about 20 when including a coded mask in the telescope, the energy resolution changes from 70% at 100 MeV to 35% at 550 MeV. The characteristics of the telescope and its systems have been determined by the Monte-Carlo method as well as by accelerator calibrations. Discrete sources at the intensity level of 10–7 quanta cm–2 s–1 may be recorded in a year of observations with the gamma-ray telescope Gamma-1 with a source location accuracy of 10 arc min.  相似文献   

8.
Non-thermal hard X-ray, gamma-ray and radio emission are the most direct signatures of the presence of energetic particles in the solar atmosphere. This paper lays emphasis on hard X-ray and radio imaging data, obtained during and outside flares, which reveal the sites where particles interact with the ambient medium. These observations, which provide more or less direct information on the topology and dynamics of the magnetic structures in which particles are accelerated and propagate, are discussed in the framework of the statistical flare scenario.  相似文献   

9.
Høg  E.  Pagel  B.E.J.  Portinari  L.  Thejll  P.A.  Macdonald  J.  Girardi  L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty.  相似文献   

10.
During a balloon flight of the MISO telescope on the 30th September 1979, the Seyfert galaxies NGC 4151 and MGC 8-11-11 were studied in the hard X-ray range (EX > 20 keV) and low-energy -ray range up to 19 MeV. An emission at the 4.5 level above 20 keV (4 above 260 keV) was detected in the direction of NGC 4151. -ray emission at the 3.9 level above 90 keV was also observed from the direction of MCG 8-11-11. The emission photon spectrum shows a high-energy cutoff at about 3 MeV. A large amount of the observed low-energy -ray diffuse background could be produced by a few percent of the X-ray emitting Seyfert galaxies having a -ray luminosity comparable to that observed from the regions of NGC 4151 or MCG 8-11-11.  相似文献   

11.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

12.
The feasibility of observation of EUV sources is assessed. Many stars have been detected in the EUV range ( 100–1000); line fluxes from others can be predicted. Selected astrophysical problems are reviewed that can benefit from EUV spectroscopy. Included among them are the physics and dynamics of stellar coronae, confirmation of nuclear surface burning on cataclysmic variables, evolutionary properties of white dwarfs, the helium abundance in the interstellar medium, and spectroscopic signatures of neutrino oscillations.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

13.
The ESA satellite COS-B viewed the Cyg-X region 7 times between November 1975 and March 1982. A search for periodic gamma-ray emission (E > 70 MeV) from Cyg X-3 at the characteristic 4.8 h period did not reveal the source. Combining all observations, the 2 upperlimit (E > 70 MeV) on the flux for the phase interval in which X-ray emission has been detected is 1.0 × 10-6 ph cm-2 s-1 and for the phase intervals in which ultra-high-energy (E 500 GeV) gamma-ray emission has been reported 1.0 × 10-7 ph cm-2 s-1. This is about one and two orders of magnitude, repectively, below the flux reported earlier by the SAS-2 team. A comparison of the spatial gamma-ray distribution in the Cyg-X region measured by SAS-2 and COS-B with the total-interstellar-gas distribution leads to the conclusion that in both cases, COS-B and SAS-2, no source has been detected at the position of Cyg X-3 in addition to the diffuse gamma-ray emission expected from the total-gas distribution.The Caravane Collaboration for the COS-B satellite: Laboratory for Space Research Leiden, Leiden, The Netherlands Istituto di Fisica Cosmica del CNR, Milano, Italy Istituto di Fisica Cosmica e Informatica del CNR, Palermo, Italy Max Planck Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, Garching-bei-München, Germany Service d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, France Space Science Department of the European Space Agency, ESTEC, Noordwijk, The Netherlands.  相似文献   

14.
We propose a technique to derive the coronal density irregularity factor , wheren is the electron density. The absolute photometric comparison between the intensity of UV lines and the white-light K-coronal polarized brightness (pB) provides an unique constraint on the inhomogeneity of the corona. The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisonal component of the Ly-. This component yields an estimate of . The quantity is then obtained from white-light K-coronal measurements. The use of lines of the same atomic species minimizes the effects due to outflow velocities (i.e., Doppler dimming), and reduces the errors introduced by the uncertainties in the ionization balance, the atomic parameters, and the solar abundances. The UVCS/SOHO unique capability of performing cotemporal and cospatial measurements of the Ly- and Ly- lines, and ofpB makes this instrument ideal for implementing this technique.  相似文献   

15.
Solar Corona Sounders (SCS), a mission designed to utilize the radio occultation technique for investigations of the inner heliosphere, was submitted to ESA in response to a call for new mission concepts. The SCS platforms are two small multifrequency transmitters placed at the anti-Earth position (superior solar conjunction) for continuous radio sounding of the solar corona. Appropriately specifying certain orbital elements for the heliocentric trajectories of the spacecraft, their radially-aligned positions as seen from Earth appear to circle the solar disk over the course of a year. The two radio sources would be most effectively positioned at apparent solar distances inside and outside the nominal solar wind critical point, respectively, e.g., at 3 R and 10 R. Radio parameters to be measured using the linearly polarized, coherent dual-frequency links to ground include the group time delay, signal amplitude, the phase (Doppler) shift, linewidth, and Faraday rotation. The link frequencies for coronal sounding observations this close to the Sun could be the interplanetary standards at S-band (2.3 GHz) and X-band (8.4 GHz). These measurements are used to derive both mean values and fluctuation spectra of such coronal parameters as the electron density, the solar wind velocity, and the magnetic field. The geometry afforded by the two radio ray paths from the SCS transmitters would provide unprecedented observations of the radial evolution of dynamic coronal events such as coronal mass ejections.  相似文献   

16.
A new X-ray image of the galactic plane has been produced using the 45 arcmin square field of view of the Medium Energy Instrument on EXOSAT. This image shows a total of 64 sources including 18 new ones which include the first observation of persistent emission from the globular cluster bursters Terzan 1 and Terzan 5. The most important discovery from this image is a 2° wide ridge of diffuse emission symmetrical about the plane and extending from the galactic centre to 1=±40°. The spectrum of this emission appears to be hard ( 1.2) with no significant absorption.  相似文献   

17.
Magnetic reconnection provides an efficient conversion of the so-called free magnetic energy to kinetic and thermal energies of cosmic plasmas, hard electromagnetic radiation, and accelerated particles. This phenomenon was found in laboratory and space, but it is especially well studied in the solar atmosphere where it manifests itself as flares and flare-like events. We review the works devoted to the tearing instability — the inalienable part of the reconnection process — in current sheets which have, inside of them, a transverse (perpendicular to the sheet plain) component of the magnetic field and a longitudinal (parallel to the electric current) component of the field. Such non-neutral current sheets are well known as the energy sources for flare-like processes in the solar corona. In particular, quasi-steady high-temperature turbulent current sheets are the energy sources during the main or hot phase of solar flares. These sheets are stabilized with respect to the collisionless tearing instability by a small transverse component of magnetic fiel, normally existing in the reconnecting and reconnected magnetic fluxes. The collision tearing mode plays, however, an important and perhaps dominant role for non-neutral current sheets in solar flares. In the MHD approximation, the theory shows that the tearing instability can be completely stabilized by the transverse fieldB n if its value satisfies the conditionB n /BS –3/4 B is the reconnecting component of the magnetic field just near the current sheet,S is the magnetic Reynolds number for the sheet. In this case, stable current sheets become sources of temporal spatial oscillations and usual MHD waves. The application of the theory to the solar atmosphere shows that the effect of the transverse field explains high stability of high-temperature turbulent current sheets in the solar corona. The stable current sheets can be sources of radiation in the radio band. If the sheet is destabilized (atB n /BS –3/4) the compressibility of plasma leads to the arizing of the tearing instability in a long wave region, in which for an incompressible plasma the instability is absent. When a longitudinal magnetic field exists in the current sheet, the compressibility-induces instability can be dumped by the longitudinal field. These effects are significant in destabilization of reconnecting current sheets in solar flares: in particular, the instability with respect to disturbances comparable with the width of the sheet is determined by the effect of compressibility.  相似文献   

18.
An overview of the solar wind termination shock is presented including: its place in the heliosphere and its origin; its structure including the role of interstellar pickup ions and galactic and anomalous cosmic rays; its inferred location based on Lyman- backscatter, Voyager radio signals, and anomalous cosmic rays; its shape and movement.  相似文献   

19.
The magnetogram inversion technique (MIT) is based upon recordings of geomagnetic variations at the worldwide network of ground-based magnetometers. MIT ensures a calculation of a global spatial distribution of the electric field, currents and Joule heating in the ionosphere. Variant MIT-2 provides, additionally, continuous monitoring of the following parameters: Poynting vector flux from the solar wind into the magnetosphere (); power, both dissipated and accumulated in the magnetosphere; magnetic flux in the open tail; and the magnetotail length (l T) (distance between the dayside and nightside neutral points in the Dungey model). Using MIT-2 and data of direct measurements in the solar wind, an analysis is made of a number of substorms, and a new scenario of substorms is suggested. The scenario includes the convection model, the model with a neutral line and the model of magnetosphere-ionosphere coupling (outside the current sheet), i.e., the three known models. A brief review is given of these and some other substorms models. A new element in the scenario is the strong positive feedback in the primary generator circuit, which ensures growth of the ratio = / Aby an order of magnitude or more during the substorms. Here Ais the Pointing vector flux in the Akasofu-Perrault approximation, i.e., without the feedback taken into account. The growth of during the substorm is caused only by the feedback effect. It is assumed that the feedback arises due to an elongation of the magnetotail, i.e., a growth of l Tby a factor of (23) during the substorm.In the active phase of substorm, a part (the first active phase) has been identified, where the principal role in the energetics is played by the feedback mechanism and the external energy source (although the internal source plus reconnection inside the plasma sheet make a marked contribution). In the second active phase (expansion) the external generator (solar wind) is switched off, and the main role is now played by the internal energy source (the tail magnetic field and ionospheric wind energy).Models of DP-2 DP-1 transitions are also considered, as well as the magnetospheric substorm-solar flare analogy.  相似文献   

20.
Small scale structure in local interstellar matter (LISM) is considered. Overall morphology of the local cloud complex is inferred from Ca II absorption lines and observations of H I in white dwarf stars. Clouds with column densities ranging from 2–100 × 1017 cm–2 are found within 20 pc of the Sun. Cold (50 K) dense (105 cm–3) small (5–10 au) clouds could be embedded and currently undetected in the upwind gas. The Sun appears to be embedded in a filament of gas with thickness 0.7 pc, and cross-wise column density 2 × 1017 cm–2. The local magnetic field direction is parallel to the filament, suggesting that the physical process causing the filamentation is MHD related. Enhanced abundances of refractory elements and LISM kinematics indicate outflowing gas from the Scorpius-Centaurus Association. The local flow vector and Sco data are consistent with a 4,000,000 year old superbubble shell at –22 km s–1, which is a shock front passing through preshock gas at –12 km s–1, and yielding cooled postshock gas at –26 km s–1in the upwind direction. A preshock magnetic field strength of 1.6 G, and postshock field strength of 5.2 G embedded in the superbubble shell, are consistent with the data.Abbreviations LISM Local ISM - SIC Surrounding Interstellar Cloud - LIC Local Interstellar Cloud  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号